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Abstract 

There are increasing number of aging populations in the State of Florida for whom 

safe, reliable and accessible transportation is a very significant issue. This is highly 

dependent on the performance of Florida’s roadways and critical assets such as 

bridges, critical facilities such as hospitals and other relevant structures. Their 

performance becomes especially critical in the presence of extreme events such as 

hurricanes where the connectivity between the critical structural and transportation 

assets, and the roadway network play a vital role in providing safety, reliability and 

accessibility to all roadway users including aging populations. Central to this 

challenge is the need to identify the interdependencies between these vital elements, 

and their effects on the aging people’s communities and households, which is a very 

challenging problem. This problem becomes even more challenging since the aging 

populations are identified as one of the cohorts with a heightened vulnerability to 

climate change. In order to respond to this challenge, this project presents a holistic 

approach based on the implementation of Geographical Information Systems-based 

novel models that study the interdependencies between power lines, roadways, critical 

facilities such as hospitals and bridges with a focus on demographics and 

socioeconomics. These models can provide solutions to handle the high risk associated 

with these disruptions, reduce their effect on the aging people’s communities, and 

therefore improve the community resilience. Realistic case studies are built and used 

to evaluate the differences in mitigation strategies for different types of roadway-

related disruptions based on the impact point/area, the weather conditions (wind and 

rain), the aging population living in the affected area, and duration/type of the event.  
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Chapter 1 Background and Motivation 

The urgent need to understand and study the interdependencies among the elements 

of civil infrastructure systems has been receiving extra attention recently. However, the 

interdependencies between structural assets (e.g., vital connectors such as bridges, critical 

facilities such as hospitals), environment (e.g., trees), power grid and roadway networks, 

and their effects on aging people’s households and communities have not been studied 

before. Florida is an essential state to provide such an aging population-focused 

interdependency assessment, especially considering the fact that 17.34% of the state 

population in 2010 was 65 years and older, being the second highest nationally. The 65+ 

population of the State of Florida is 3,259,602 as of 2010 whereas the ratio of the 65+ 

population to the total state population is 17.33%. Figure 1.1 shows the spatial distribution 

of 65+ populations for the State of Florida (both counts and percentages) at the population 

block group level. It is important to note that neither number of people nor percentage of 

these people in the block group is adequate to properly reflect the possible effect of the 

existing population. Evaluating only 65+ population count would disguise those sparsely 

populated blocks that are highly populated in terms of 65+ residents. On the other hand, 

evaluating only the 65+ population percentages (65+/Total Population) would disguise 

those highly populated blocks that have relatively fewer 65+ residents. 

Moreover, the Baby boomer generation, people born after the World War II, will 

substantially increase the percentage of the 65+ population in the whole nation as well as in 

Florida. The 65+ population growth is even faster in Florida, with those age 65 and older 

expected to comprise 41% of the state population by 2030. This implies that Florida will 

have an even higher number of 65+ population in the future considering the fact that the 
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present day 65+ population percentage in the State of Florida is already higher than the 

national average. As such, the evaluation of the interdependency between the structures, 

trees, transportation connectors, power and roadway networks with respect to 65+ 

populations will become even more important. This study will focus on the 65+ 

populations in order to represent the aging populations; however, this approach can be 

applied for other adult age groups as well.  

 
(a) 65+ Population Counts                       (b) 65+ Population Percentages 

Figure 1.1. Spatial Distribution of Aging 65+ Populations 

In addition, community resilience has become a key planning and policy issue both 

at the federal, state and local levels. An efficient transportation system is critical to enhance 

the ability of a community to recover from any disruptions. In this context, transportation 

assets such as bridges, tunnels, facilities such as hospitals are critical since they help 

providing safe and reliable access for transportation to the public. The efficiency of a 

transportation system depends on the accessibility and availability of these facilities 

through the available roadway network. This indicates that the dependencies between them 

become vital in order to achieve high transportation efficiency and performance while 

13 



serving the public, especially those that live in rural areas and/or small communities. In 

addition, the multiple dependencies between transportation assets, facilities and roadways 

create the interdependencies among these interconnected elements. Since these facilities are 

also necessarily limited in number, identifying and assessing these interdependencies is a 

major concern for agencies. This issue becomes even more complex when other structural, 

power-related or environmental elements are also considered. For example, the adverse 

effect of structural or tree debris on the roadways and power lines can be extremely critical 

during emergency transportation operations (i.e., loss of capacity and performance), which 

creates an extra level of dependency between the structures, trees, power lines and the 

roadway network. The overall dependencies and interdependencies are presented in Figure 

1.2 in the context of aging-focused transportation operations. For a state like Florida, any 

dependency and interdependency that can elevate the effect of disruptions on the 

communities may be devastating, especially when aging populations are considered due to 

their potential cognitive, physical and mental limitations and health problems that can 

adversely affect their driving and wayfinding skills. Therefore, aging people may have a 

greater need for an efficient transportation system that is robust to disruptions than other 

adult age groups. 

14 



 
(a) 

 
(b) 

Figure 1.2. Aging Population-focused Dependencies and Interdependencies 
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One of the most important challenges of the transportation operations is reducing 

the harm and alleviating the suffering a disruption causes to its victims. A significant 

component of this challenge is maximizing the accessibility to the critical facilities such as 

intermodal facilities and emergency shelters, especially for vulnerable populations such as 

aging and/or people with special needs. Any disruption (either at the facility level or on the 

roadway network) will make this inaccessibility problem even worse, especially for the 

aging people, for whom any extra incurred time may be life threatening. Four examples of 

dependencies in the context of transportation accessibility are presented as follows: 

(1) The closure or loss of a roadway section or a single lane on the pre-determined 

evacuation route due to debris (structural or fallen trees) may drastically increase the travel 

time needed to reach the emergency shelters, which may have vital consequences for aging 

people. This clearly shows the importance of extensively studying the dependencies so that 

the effect of such a disruption on the aging communities and households (urban or rural) 

can be minimized. 

(2) Mass evacuations have known to cause severe traffic jams. It will be ideal if 

unnecessary and shadow evacuations can be avoided, especially for the aging populations 

who may have mobility issues or who may suffer significantly during the actual 

evacuation. An important interdependency problem herein is to analyze the safety of 

buildings subjected to hurricanes, and to estimate the necessary volume of evacuation, with 

the goal of avoiding unnecessary and shadow evacuations. Therefore, severe traffic jams 

and suffering of aging population could be minimized by studying this interdependency 

problem. 
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(3) The effect of bridge damage (due to a disruption such as flooding in the event of a 

heavy rain) on the performance of the transportation network is critical since bridges are 

naturally the vital connectors that are used extensively by the public. Therefore, another 

dependency that should be clearly assessed is the effects of the structural bridge damage on 

the roadway closures. This will help reducing the risk associated with the structural failure 

of a bridge, and providing safety to the public, including the aging people’s households and 

communities. 

(4) Florida’s emergency relief operations were significantly affected by these 

hurricanes such as Irma, which substantially flooded roadways, toppled trees and utility 

poles, taking power, cable, and phone lines with the 80 to 100 mph sustained winds. This 

led to the inability of the affected infrastructure components (i.e., roadways and power 

lines) to effectively cope with random and dynamic changes and a lack of available plans in 

enacting adequate emergency response measures. Such shortfalls have translated into 

critical electricity and transportation networks-related resilience deficiencies while 

amplifying vulnerabilities and exposing gaps in planning and response. Public works crews 

had to clear these downed trees and utility poles so that other emergency vehicles, such as 

ambulances, fire, and supply trucks could use these roadways. Also, power restoration 

crews were significantly slowed down by the closure or loss of roadway sections because 

of debris, such as fallen trees, particularly in the cases in which the removal of the trees 

was under the jurisdiction of public works rather than power restoration crews. Such lack 

of coordination was one of the main reasons for delays in handling the power outage-

related problems, rippling through entire cities until fixed. 
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The main goal of the project is developing Geographic Information Systems-based 

models in order to (a) enhance resilience, safety and accessibility for aging people’s 

communities and households, (b) improve the preparedness of these households and 

communities for and recovery from disruptions. In doing so, conventional approaches will 

separately deal with facilities, trees, bridges, and transportation networks affected by 

disruptions (e.g., day-to-day disruptions such as congestion and accidents, or emergency 

disruptions such as flooding or debris due to hurricanes). A major contribution of this 

project is to model interdependencies of these components, to greatly enhance prediction 

capabilities, and thereby to provide assistance in the context of community resilience. 

This report contains four chapters. Chapter 1 provides the background and 

motivation for the problem. 

Chapter 2 focuses on a two-step methodology to identify the impact of Hurricane 

Hermine on the City of Tallahassee, the capital of Florida. The regional and socioeconomic 

variations in the Hermine’s impact were studied via spatially and statistically analyzing 

power outages. First step includes a spatial analysis to illustrate the magnitude of customers 

affected by power outages together with a clustering analysis. This step aims to determine 

whether the customers affected from outages are clustered or not. Second step involves a 

Bayesian spatial autoregressive model in order to identify the effects of several 

demographic, socioeconomic and transportation-related variables on the magnitude of 

customers affected by power outages. 

Chapter 3 evaluates the accessibility of emergency response facilities, such as 

police stations, fire stations and hospitals in the City of Tallahassee, the capital of Florida, 

was extensively studied using real-life data on roadway closures during Hurricane 
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Hermine. A new metric, namely Accessibility Decrease Index (ADI), was proposed, which 

measures the change in ERTT before and in the aftermath of a hurricane such as Hermine. 

Chapter 4 focuses on the senior community resilience, which is assessed through 

the accessibility of seniors to hospitals after bridge damage caused by hurricane events. 

Pinellas County in the Tampa Bay area is used as case-study. The following results are 

presented: (i) exposure probabilities for hurricane events at bridge locations; (ii) bridge 

damage state functions and damage state rating assignments using historical data from the 

National Bridge Inventory (NBI) database; (iii) identification of bridges at risk to 

hurricane-induced damage; (iv) bridges identified as serving areas (census districts) with 

dense population of aging people; and (v) the estimated effects of bridge closures on 

mobility and resilience of the aged population, based on accessibility to hospitals by using 

congested and free flow travel times obtained from traffic assignment modeling. 
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Chapter 2 Assessment of the Hurricane-induced Power Outages from a Demographic, 

Socioeconomic, and Transportation Perspective 

Natural disasters have devastating effects on the infrastructure, and disrupt every 

aspect of daily life in the regions they hit. To alleviate problems caused by these disasters, 

first an impact assessment is needed. As such, this chapter focuses on a two-step 

methodology to identify the impact of Hurricane Hermine on the City of Tallahassee, the 

capital of Florida. The regional and socioeconomic variations in the Hermine’s impact were 

studied via spatially and statistically analyzing power outages. First step includes a spatial 

analysis to illustrate the magnitude of customers affected by power outages together with a 

clustering analysis. This step aims to determine whether the customers affected from 

outages are clustered or not. Second step involves a Bayesian spatial autoregressive model 

in order to identify the effects of several demographic, socioeconomic and transportation-

related variables on the magnitude of customers affected by power outages. Results showed 

that customers affected by outages are spatially clustered at particular regions rather than 

being dispersed. This indicates the need to pinpoint such vulnerable locations, and develop 

strategies to reduce hurricane-induced disruptions. Furthermore, the increase in the 

magnitude of affected customers were found to be associated with several variables such as 

the power network and total generated trips as well as the demographic factors. The 

information gained from the findings of this study can assist emergency officials in 

identifying critical and/or less resilient regions, and determining those demographic and 

socioeconomic groups which were relatively more affected by the consequences of 

hurricanes than others.   
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2.1 Introduction 

Natural disasters such as hurricanes have devastating effects on the infrastructure, 

and disrupt every aspect of daily life in the regions they hit. Communities living in these 

regions suffer from the adverse consequences of hurricanes; therefore, emergency officials 

are responsible to find solutions in order to alleviate the problems caused by these disasters. 

Although a sizable number of major hurricanes have struck the U.S. Gulf States such as 

Florida previously, several areas of this hurricane-prone region have never seen landfalls in 

the last thirty years. For example, Hurricane Hermine was the first hurricane to make 

landfall in Florida on September 2nd, 2016 since Hurricane Wilma in 2005, and was the 

first hurricane to directly hit Apalachee Bay since Hurricane Alma in 1966 [1]. As a result 

of Hurricane Hermine, a large region in the Northwest Florida endured power outages, food 

shortages, and roadway disruptions [2]. At a local level, Hermine left 100,000 residents 

without power in the City of Tallahassee, the capital of Florida, knocking out trees, power 

lines and shutting down stores and businesses for days [1, 2, 3]. In addition, this region was 

also affected adversely by the Hurricane Irma recently. 

Previous studies have investigated the effects and consequences of hurricanes 

through spatial and statistical models. For example, a spatial and statistical analysis was 

conducted in [4] to predict the treefalls during a hurricane using several predictors such as 

precipitation, roadway density, and wind speed via a hierarchical Bayesian model. Authors 

identified regions which possess higher risk of treefalls based on varying wind speeds. 

Moreover, it was shown that roadway density and wind speed were the most important 

variables affecting the treefall probability. The power system performance and power 

outages, on the other hand, has been of significant interest in the literature regarding the 
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adverse consequences of hurricanes. For example, the power system performance and 

power outages were investigated by [5] during five hurricanes at South and North Carolina 

in the United States. Authors examined the number of outages, affected customers, and the 

geographic distribution of disruptions as well as the type of failed power system 

components. The magnitudes of disruptions were found to be highly correlated with the 

maximum wind speed. Environmental factors were also used to predict the number of 

hurricane-related power outages, which were stated to be essential to prepare the power 

system prior to a hurricane landfall [6-8]. A two-phase estimation model was proposed 

using different environmental characteristics such as elevation, land cover, soil, 

precipitation, and vegetation characteristics in addition to speed and duration of winds [8]. 

Results showed that inclusion of environmental characteristics and two-phase modeling 

substantially increased the prediction accuracy compared to previous models. The 

importance of environmental factors (e.g. soil characteristics, elevation, etc.) on the power 

outage were previously shown by [6]. 

To predict power outages and duration of these outages, researchers proposed 

various approaches such as negative binomial regression [9], generalized additive models 

[10], spatial generalized mixed models [11], and random forest methods [7]. For instance, a 

random forest model approach was adopted in [7] using variables such as wind speed, wind 

duration, protection of power system, power system components, length of power lines, 

soil characteristics, precipitation, land slope, elevation, and land cover. They found that 

wind characteristics, precipitation, and soil characteristics (e.g. soil moisture level, etc.) 

were most effective variables on the duration of power outages. In general, we observed 

that the power outage prediction studies usually relied on some common variables. These 
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variables can be listed as hurricane characteristics (e.g. wind speed and duration, 

precipitation), geographical characteristics (e.g. land cover, elevation, soil type and 

features, vegetation, tree type), and power system characteristics (e.g. system components, 

electricity poles, power line lengths, protective systems).  

The assessment of different aspects of hurricane impact has been as important as 

predicting power outages. For example, $410 million loss was estimated for State of 

Virginia through simulating various hurricane scenarios that will lead workforce losses due 

to absence [12]. In addition to economic loss, several studies paid attention to vulnerability 

and resilience of different demographic and socioeconomic groups as well as impacts of 

hurricanes and power outages on these groups [13-16]. For instance, Congressional 

Research Services’ report on the impact of the Hurricane Katrina showed that the poor and 

African American population suffered the most due to the storm [14]. Considering this 

important association between demographics/socioeconomics and hurricane impact, A 

social vulnerability index was developed for coastal communities using factors such as 

race, age, gender, and socioeconomic status, which also showed social vulnerability is 

driven by these factors [15]. Another study focused on daily power outages rather than 

hurricane-induced ones [17]. This study examined the community resilience to daily power 

outages considering a few socioeconomic and transportation-related variables such as the 

disadvantage of Native Americans, distance to the nearest hospital, and distance to the 

major roadway. Authors have also used a spatial regression approach using these variables 

in order to interpret the outlying reasons behind the daily power outage durations.  

In this study, we investigated the impact of Hurricane Hermine both on the City of 

Tallahassee infrastructure and the communities of the city. The prominent consequence of 
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the hurricane –power outages, was examined spatially and statistically in order to 

comprehend the regional variations of Hermine’s impact on the different demographic and 

socioeconomic groups. This analysis also led to the identification of the factors such as the 

type of powerlines or wind speed which drive the magnitude of this impact. In order to 

perform this, a two-step approach was adopted. First step includes (a) a spatial analysis to 

illustrate the magnitude of customers affected by power outages in different regions, and 

(b) a Spatial Autocorrelation analysis based on Moran’s I index [18, 19] together with a 

clustering analysis based on Anselin Local Moran’s I index [20, 21]. The spatial analysis 

was conducted in order to determine the spatial distribution of the customers affected from 

outages. Second step involves a statistical analysis to model the number of customers 

affected by power outages over the total population (i.e., percentage of affected customers) 

using several variables related to demography, socioeconomics, power system components 

(e.g. underground/overhead powerlines), roadway disruptions, and transportation. Note 

that, in this study, the objective is to assess the impact of Hurricane Hermine on the 

Tallahassee communities rather than attempting to predict the locale of power outages. 

That is, we use demographic, socioeconomic, and transportation-related variables in order 

to answer the following question: Where and why post-hurricane treatments and remedies 

of the city agencies should focus? 

2.2 Case Study Area and Data Description 

This section presents a case study application in the City of Tallahassee, the capital 

of Florida, which was hit by Hurricane Hermine on September 2nd, 2016 (Figure 2.1a). 

Tallahassee is also a home to two universities, and has a population of 190,894, which 

makes it a mid-size city and a considerable urban region. In this chapter, several datasets 
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were used to conduct the proposed case study application. These datasets include those that 

are related to the city infrastructure (power lines, failed power system components and 

roadway closures due to fallen trees, provided by the City of Tallahassee – Figure 2.1b, 

Figure 2.1c and Figure 2.2, respectively), 2010 Census data [22] (census block groups - 

Figure 2.2), and maximum measured wind speeds at weather stations in Tallahassee [23] 

(Figure 2.2). 

The City of Tallahassee is a full-service municipality providing essential services to 

the region: electric, gas, water solid waste, sewer, public works, airport, mass transit, etc. It 

was one of the first public utilities in the U.S. to implement a full-scale Automated 

Metering Infrastructure in 2009. Power outage data was gathered through the “ping” 

operation for the power network, which identifies the outages. “Ping” data contains 

unresponsive devices (e.g., circuit breakers, reclosers, fuses, switches, transformers and 

service points), and the following information: the feeder they belong to, dispatch remarks, 

time of outage, time of restoration, duration for the outages and number of customers 

affected. The restoration covers a time frame from September 1st to September 10th, 2016, 

affecting 60,928 customers [1]. The failed power system components were used to 

calculate number of customers affected by power outage at each U.S. census population 

block group. Note that the failure of these components result in different outcomes in the 

context of affected customers. For instance, service point failures usually indicate one or a 

few number of customers suffering from the outage. Failure of circuit breakers, on the 

other hand, affects a large number of customers since these components serve multiple 

power lines connected to many customers. 
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Roadway closures were identified through online requests and requests through a 

mobile app called DigiTally [24], which are both maintained by the City of Tallahassee. 

DigiTally establishes a platform to connect residences directly with City of Tallahassee, 

which helps communicating more effectively and efficiently to resolve issues in the 

community. Through these systems, residents can file requests for any issues and monitor 

others. During Hurricane Hermine, 776 roadway closures/disruptions due to tree failures 

were reported in a one week window. Note that, although this may not be the whole 

roadway closures that happened as a result of fallen trees, the City of Tallahassee officials 

have ensured the research team that this dataset included all the major roadway closures the 

city has experienced. The total number of roadway closures together with the average 

duration of closure were determined for each U.S. census population block group, and then 

used in the Bayesian spatial autoregressive model. A flowchart illustrating overall 

methodology is provided in Figure 2.3. 
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(a)                                                                    (b) 

 
(c) 

Figure 2.1. Overview of the study area and data (a) study area, (b) power infrastructure, (c) 
customers and failed components of the power infrastructure 
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Figure 2.2. U.S. Census population block groups, hurricane related roadway closures due 
to fallen trees and maximum wind speed measurements at weather stations 

2.3 Methodology 

This study consists of two different methodological approaches to investigate the 

impact of Hurricane Hermine both on the infrastructure and the communities of the City of 

Tallahassee: spatial and statistical analyses. Spatial analyses include: a) mapping the 

affected customers, b) determining the density distribution of the magnitude of power 

outages using a kernel density estimation (KDE)-based approach, c) identifying the spatial 

autocorrelation (using Global Moran’s I index) between power outage magnitudes of 

affected customers to discover whether there is a clustering pattern or not, and d) 

illustrating those power outage clusters using the Local Moran’s I index, if there is a 
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clustering pattern identified by the Global Moran’s I index. Following the spatial analysis, 

a statistical modeling approach was utilized to comprehend the intricacy of the power 

outages. As such, a Bayesian spatial autoregressive model was adopted to conduct a 

statistical analysis due to its advantage in modeling spatially distributed datasets which 

possess inherent spatial correlation between observations. This type of Bayesian modeling 

approach was preferred due to its power when sample size is relatively small [25, 26]. A 

flowchart illustrating overall methodology is provided in Figure 2.3. 

 

Figure 2.3. Methodology flowchart 

2.3.1 Spatial Analysis 

The power outage data revealed the spatial distribution of affected customers. This 

information was used to obtain the power outage density map shown in Figure 2.4. Figure 

2.4a shows the failed power system components along with the power outage densities 

throughout the study region. Figure 2.4b, on the other hand, displays how roadway closures 

and the power outage densities are related. It is clear from the figures that a direct 

relationship between roadway closure intensity and the elevated power outage density 

exists since roadway closures, particularly those with longer durations, were more frequent 

at those regions with high outage densities. The power outage density was calculated based 
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on the spatial distribution of affected customers using a kernel density estimation (KDE) 

approach [27] in ArcGIS software [28]. This was followed by determining the total number 

of affected customers in each census block group to be able to observe the regional 

variation of the power outages in the city. As such, two different metrics were calculated: 

1) total number of affected customers, and 2) total number of affected customers divided by 

the total population of each census block group (i.e. percentage of affected customers). 

Identifying the affected customers in each census block group provided a visual basis to 

compare different regions in terms of the impact of the hurricane. A Spatial 

Autocorrelation analysis was conducted based on Moran’s I index [18, 19] to determine 

whether there is a spatial clustering pattern for customers affected from outages. This was 

followed by a clustering analysis which was conducted based on Anselin Local Moran’s I 

index [20, 21] in order to identify those census block group clusters based on the 

magnitude of affected customers. Both analyses were conducted using the ArcGIS software 

[28]. This spatial analysis aimed to highlight those regions which compel special attention 

for post-hurricane treatments (e.g. improving infrastructure, building redundant systems, 

providing generators, etc.). In addition, findings pinpoint the critical locations city can 

focus on in order to alleviate future outage problems. The regional variations of power 

outages in the City of Tallahassee are provided in the Results section. 
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(b) 

Figure 2.4. Power outage density along with (a) failed power system components, and (b) 
road closures 

2.3.2 Bayesian Spatial Autoregressive Model 

Bayesian spatial autoregressive modeling was used to assess the impact of hurricane 

on the different demographic and socioeconomic groups as well as to identify factors such 

as type of powerlines or wind speed which drive the magnitude of this impact. The 

necessity of implementing spatial autoregressive model arose from the spatial 

autocorrelation analysis (Moran’s I) conducted for the residuals obtained from ordinary 

least squares analysis [18, 19]. Findings of this analysis are provided in the Results section. 
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The demographic and socioeconomic variables were provided in the U.S. Census data [22] 

whereas power outages and roadway closures were provided by the City of Tallahassee. 

Moreover, maximum wind speeds at weather stations were collected from WeatherSTEM 

[23], and the total generated trips at census block groups were obtained from the Capital 

Region Cube model [29, 30]. The list of candidate variables for the model together with 

their descriptive statistics and definitions are provided in Table 2.1. The correlations 

between these candidates were tested using Pearson correlation coefficient measure (Figure 

2.5), and highly correlated variables such as percentage of white and African-American 

population were identified. Then, the potential models were investigated, and the final 

model along with its variables was determined. Note that the dependent variable of the 

analysis is total number of affected customers over the total population (i.e. percentage of 

affected customers). This metric is similar to the “System Average Interruption Frequency 

Index” (SAIFI) proposed by IEEE [31]; however, the denominator in this chapter is total 

population rather than total customers given in SAIFI. 

The spatial autoregressive modeling is a particular approach applicable to spatially 

distributed datasets which possess an inherent spatial correlation between observations. 

This type of data is known to produce systematically varying residuals when implemented 

with models that disregard spatial relations between observations (i.e. generalized linear 

models) [32]. The reason behind the Bayesian approach was as follows: (a) the sample size 

of the study data was relatively small (N=160), and (b) the constant variation of errors and 

normality assumption inherent to maximum likelihood (ML) estimation was relaxed. The 

Bayesian and ML approaches are known to result in similar estimates when sample size is 

large enough (N>200) [25, 26]. However, one of the advantages of Bayesian models is 
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observed when there is this aforementioned small sample size problem, which prevents 

making consistent and accurate estimates using the ML approach [25]. In this study, there 

are 160 census block groups used to model the power outages, which compels the use of 

Bayesian approaches rather than ML-based ones [26]. Furthermore, the Bayesian extension 

of spatial autoregressive model introduces the concept of spatial heterogeneity which 

relaxes the assumptions of normality and constant variation of errors. A detailed 

description and discussion on the Bayesian inference can be found in [33]. The structure of 

Bayesian spatial autoregressive model is given below [34]: 

𝑦𝑦 = 𝜌𝜌𝑾𝑾𝟏𝟏𝑦𝑦 + 𝑿𝑿𝛽𝛽 + 𝑢𝑢 (1) 

𝑢𝑢 = 𝜆𝜆𝑾𝑾𝟐𝟐𝑢𝑢 + 𝜖𝜖  

𝜖𝜖~𝑁𝑁(0,𝜎𝜎2𝑉𝑉)  

𝑉𝑉 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛)  

 

where 𝑦𝑦 is an 𝑛𝑛 by 1 vector of observations, 𝑿𝑿 is 𝑛𝑛 by 𝑘𝑘 matrix of model variables, 

𝛽𝛽 is 𝑘𝑘 by 1 vector of variable coefficients, 𝑾𝑾𝟏𝟏 and 𝑾𝑾𝟐𝟐 are 𝑛𝑛 by 𝑛𝑛 row-standardized (rows 

sum to 1) spatial weights matrices also known as contiguity matrices involving the distance 

relations between observations and having zeros in diagonal. 𝜌𝜌 and 𝜆𝜆 are the spatial 

autoregressive parameters, 𝜖𝜖 is normally distributed error term with zero mean and non-

constant variance with different values for each observation through 𝑉𝑉. The magnitudes of 

𝑣𝑣𝑖𝑖 which introduce spatial heteroscedasticity via non-constant variance were estimated by 

the Bayesian approach.  

The Bayesian modeling approach compels the identification of prior distributions 

for parameters based on the prior knowledge about the variables and their parameters. 

However, this prior knowledge is generally not available, and prior distributions are chosen 
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for convenience rather than any prior information about the actual parameter distributions. 

The posterior distributions of parameters are determined based on these prior distributions 

[33]. The Bayesian specification of the model as used in this study is given below [34]: 

𝛽𝛽 ~ 𝑁𝑁(𝑐𝑐,𝑇𝑇) (2) 

𝜎𝜎 ~ (1/𝜎𝜎)  

𝑟𝑟/𝑣𝑣𝑖𝑖 ~ 𝐼𝐼𝐼𝐼 𝜒𝜒2(𝑟𝑟)/𝑟𝑟  

𝑟𝑟 ~ Γ(𝑚𝑚, 𝑘𝑘)  

where a normal prior was introduced to 𝛽𝛽 and a diffuse prior was introduced into 𝜎𝜎. 

Variance terms 𝑣𝑣𝑖𝑖, are fixed and they were estimated based on the informative prior 

distribution of 𝜒𝜒2(𝑟𝑟)/𝑟𝑟 with gamma distributed parameter 𝑟𝑟.  

There are two special models that can be derived based on the general model 

specification given in Equation 1 through the imposed restrictions on spatial weights 

matrices. First model involves setting 𝑊𝑊1 to zero which creates spatially correlated 

disturbances with a classical regression model, or the so-called spatial errors model (SEM). 

Setting 𝑊𝑊2 to zero, on the other hand, produces a mixed regressive – spatial autoregressive 

model (SAR) which is also known as the spatial lag model [35]. We tested the general 

proposed model as well as these two special models in order to identify the best fitting 

model to the used data. 
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Table 2.1. Descriptive Statistics and Definitions of Candidate Variables  

Variables Min. Max. Mean Med. St.D. Definition 
White % 0.003 0.972 0.607 0.656 0.263 Percentage of white population 

African American % 0.011 0.981 0.328 0.266 0.266 Percentage of African American 
population 

Young (18-) % 0 0.427 0.186 0.197 0.086 Percentage of 18 years and younger 
population 

Aging (65+) % 0 0.591 0.102 0.092 0.078 Percentage of 65 years and older 
population 

Average Family Size 0 4 2.856 3 0.548 Average family size in a census block 
group 

Above Poverty % 0 1.487 0.723 0.761 0.297 Percentage of people living above 
poverty level 

Below Poverty % 0 1.117 0.225 0.139 0.24 Percentage of people living below 
poverty level 

College Degree % 0 0.417 0.16 0.156 0.081 Percentage of people with at least 
college degree 

Use of Car for 
Transportation % 

0 0.857 0.447 0.452 0.164 Percentage of people relying on private 
cars for transportation 

Use of Public 
Transportation % 

0 0.142 0.008 0 0.021 Percentage of people using public 
transportation for travel purposes 

Median Family Income 0 16 5.837 5.045 3.599 Median income of families living in a 
census block group (divided by 10,000) 

Zero Vehicle 
Ownership % 

0 0.404 0.032 0.015 0.051 Percentage of people with no vehicle 
ownership 

Number of Road 
Closures 

0 28 4.869 3 5.199 Total number of road closures within the 
census block group 

Average Day Roads 
Closed 

0 5 1.854 1.991 1.173 Average duration of road closures (days) 

Total Length of 
Underground (UG) 

Power Lines 

0 63 6.049 3.049 8.728 Total length of underground power lines  
(divided by 10,000) 

Total Length of 
Overhead (OH) Power 

Lines 

0.061 30 8.641 7.752 5.4 Total length of overhead power lines  
(divided by 10,000) 

Total Length of Power 
Lines 

2.053 698 146.899 118.2 106.2 Total length of power lines 

Maximum Wind Speed 14 47 24.519 22 9.447 Maximum wind speed measured during 
hurricane 

Total Generated Trips / 
Total Population 

0 44 3.642 1.985 5.152 Total daily travels generated in a census 
block group over total population 

Abbreviations Min: minimum, Max: maximum, Med: Median, St.D.: standard deviation 
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Figure 2.5. Correlation chart of candidate variables 

2.4 Results 

2.4.1 Spatial Analysis Results 

The first step of the analysis involves the spatial investigation of power outages 

induced by the Hurricane Hermine. The analysis was conducted to identify those critical 

locations which were affected the most. In order to achieve this, the total number of 

customers affected by outages in each census block group was determined, and two metrics 

–total number of affected customers and percentage of affected customers– were calculated 

(Figure 2.6). Figure 2.6a and Figure 2.6b display a slight variation due to the normalization 

by the total population living in the census block groups. Figure 2.6a shows that power 

outages were more or less spread over the City of Tallahassee. It is observed that there 

were customers highly affected by the outages in the whole city. Figure 2.6b, on the other 

hand, shows that the power outages were mostly clustered in the Northwest and Mid-
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Southeast of the City of Tallahassee when the focus is on the percentage of affected 

customers. Note that red regions have relatively decreased in the Southeast compared to 

Figure 2.6a. This means that even though there is a substantial number of affected 

customers in the Southeast Tallahassee, the number of affected customers are not that high 

compared to the total population. Furthermore, roadway closures were displayed along with 

the affected customers in both maps. It is apparent from the maps that there is a higher 

concentration of roadway closures in those regions with elevated percentage of affected 

customers. This indicates a close relationship between roadway closures and power 

outages, which is expected since fallen trees are the most prominent cause of these two 

disruptions. Nevertheless, roadway closure can also stem from damages inflicted to the 

power system components. For instance, similar to fallen trees, fallen electricity poles or 

other failed power feeder lines can also lead to roadway closures. Furthermore, power 

outages can also affect traffic signalization of the city which would further cripple the 

transportation network and cause closure of roadways due to safety concerns. 

Figure 2.7a and Figure 2.7b, on the other hand, demonstrate the spatial clustering of 

census block groups based on the magnitude of affected customers. Although the visual 

inspection of Figure 2.6a and Figure 2.6b does not show a clustering pattern, spatial 

autocorrelation (Global Moran’s I) and clustering analysis (Local Moran’s I) results 

disclosed that there is a clustering pattern based on both number of affected customers and 

percentage of affected customers. For instance, Figure 2.7a revealed that there is a high 

clustering of number of affected customers in the Mid-Southeast Tallahassee and a smaller 

region in the Northwest Tallahassee. This clustering pattern shifted westward when 

percentage of affected customers is considered, as shown in Figure 2.7b. This type of 
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visualization of the outage data can be helpful for the city officials to pinpoint those critical 

locations for post-hurricane treatments. However, there is a need for more concrete 

statistics-based analyses in order to verify these results, which will be presented in the next 

section. 

 
(a)                                                               (b) 

Figure 2.6. Spatial distribution of power outages in each census block group together with 
wind speed measurements (a) total number of affected customers, (b) total number of 

affected customers over total population 

 

(a)                                                               (b) 

Figure 2.7. Spatial Autocorrelation and Local Moran’s I results (a) total number of affected 
customers, (b) percentage of affected customers 
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2.4.2 Spatial Autoregressive Model Results 

To assess the necessity for a spatial autoregressive model, Moran’s I statistics was 

calculated first for the residuals of an ordinary least squares analysis. The result for this 

analysis (Moran’s I: 0.18, Moran’ I statistics: 4.76 > 1.96, hypothesis of no spatial 

correlation rejected) clearly showed that there is an inherent spatial relationship between 

observations that cannot be captured by non-spatial models. This finding indicates that a 

linear (or non-linear) model which disregard a spatial correlation between observations is 

not appropriate for the data used in this study. Given the need for spatial models, we 

created the spatial weights matrix required for spatial model. As such, we first identified 

the distance that provides the highest spatial correlation between observations through a 

Ripley’s K function approach [36], which resulted in 6.25 miles. Then, a spatial weights 

matrix was created by using this distance (6.25 mi) as threshold value. The spatial 

relationship between observations was conceptualized by the inverse distance method.  

In this chapter, three spatial autoregressive models were tested, namely; general, 

SAR, and SEM models in order to find the best fitting approach through checking the 

statistical significance of spatial autoregressive model parameters 𝜌𝜌 and 𝜆𝜆 [34]. Table 2.2 

shows that parameters of both SAR and SEM model are statistically significant at a 5% 

significance level, while parameters of the general model are not significant. This finding 

indicates that SAR or SEM model is more appropriate than the general model. A further 

examination was conducted to check the spatial correlation between residuals of the SAR 

model. Spatial autocorrelation analysis indicated that there still exists a spatial dependence 

in the residuals of SAR model implying that spatial correlation between observations are 

not fully captured. Therefore, SEM model appears to fit the study data better than SAR 
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model. Nevertheless, we presented results for both models in order to show a better picture 

of the spatial model findings. 

Result of the spatial autoregressive modeling shows that most of the variables (9 out 

of 12) have statistically significant effects on the percentage of affected customers at a 

significance level of 10% (Table 2.3). Moreover, both approaches (SEM and SAR) appear 

to produce similar results. “Aging (65+) %” variable reveals that the higher the percentage 

aging population living in a census block, the higher the percentage of affected customers. 

This finding implies that the regions commonly populated by aging residents were highly 

affected by the power outages. Another interesting finding is that percentage of affected 

customers increases by the increasing “Average Family Size.” This means that census 

block groups where larger families are living suffered power outages more significantly 

than other locations. This assessment also holds for “College Degree %” and “Car Use for 

Transportation %”.  

“Median Family Income”, on the other hand, discloses a different pattern due to its’ 

negative coefficient. That is, higher median family income seems to be associated with 

decreasing percentage of affected customers. One explanation for this finding might be the 

fact that higher income families usually prefer in newly developed/developing parts of the 

city, where the infrastructure is relatively new and/or power lines are under the ground. For 

example, the coefficient of “Total Length of Overhead Power Lines” shows that the longer 

the overhead power lines, the higher the percentage of affected customers. The effect of 

“Total Length of Underground Power Lines”, on the other hand, is very small and not 

statistically significant even though it has a positive coefficient. Figure 2.1b shows that 

underground lines are more frequent at newly developed/developing areas than other parts 
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of the city due to the ease of deployment of underground lines at newly developing areas. 

Consequently, regions that have overhead lines rather than underground lines appear to be 

more vulnerable to hurricanes, which is logical and expected.  

Total number of roadway closures within each census block group and average 

duration of these closures directly reflect the impact of the hurricane, and in turn, there is a 

substantial association between power outages and these variables. A substantial amount of 

power outages could actually be a result of fallen trees on the power lines. As such, the 

higher the number of roadway closures and duration of these closures, the higher the 

number of percentage of affected customers. Similarly, “Maximum Wind Speed” variable 

is used as a measure to quantify the magnitude of the Hurricane Hermine. Surprisingly, the 

effect of wind speed is not as firm as the effect of roadway closures since it is not 

statistically significant. This means that, at the very least, there is a high variation in the 

effect of maximum measured wind speed on the power outages. This indicates that the 

maximum wind speed of the hurricane is relatively less effective by itself, and probably 

environmental factors such as presence of trees and poor infrastructure elevate the severity 

and disruptiveness of the hurricane. In other words, failed power components might be 

already in bad condition which would not be able to withstand even low to moderate wind 

speeds while components in good condition or with redundancy endured higher wind 

speeds without failing. Indeed, the power outages were mostly observed at periphery of the 

city where power system redundancy was questionable. Around the city center, on the other 

hand, power system redundancies seemed to prevent total outage despite higher wind 

speeds. Consequently, although wind speed may directly affect the failure of individual 

system components such as switches and feeders, failure of a system is more likely to be 
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triggered by the combination of several factors (e.g. state-of repair, redundancy, wind 

speed). From a transportation point of view, results show that the regions which generate 

more trips were more affected by the power outages as “Total Generated Trips / Total 

Population” variable has a positive coefficient. This is critical since the total generated trips 

generally reflect the magnitude of travels starting from a zone and usually residential areas 

generate higher number of trips. Therefore, disruptions in these areas prolong the recovery 

period after the hurricane, and in turn further cripple the economic and social life in the 

city. Nonetheless, it is important to note that the city center is observed to be relatively less 

affected by outages. This indicates that city may still be functioning since major 

government or business offices might not be as severely affected as the residential areas, 

which would enhance the economic recovery efforts. Therefore it is critical to pay 

particular attention to the power system components in and around facilities such as 

governmental offices and big businesses. However, overall resilience of the city depends 

on the well-being of the citizens since people are the engines of the disaster response and 

recovery efforts which bring about importance of power system resilience in the residential 

areas. 

Table 2.2. Spatial Model Parameter Significance  

Parameters General (p level) SAR (p level) SEM (p level) 

𝜌𝜌 0.393 (0.144) 0.523 (0.011) - 
𝜆𝜆 0.207 (0.601) - 0.703 (0.004) 
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Table 2.3. Bayesian Spatial Autoregressive Model Results 

Variables SEM SAR 
 β p p < 0.1 β p p < 0.1 

Intercept -0.286 0.06  -0.506 0.00  
Young (18-) % -0.196 0.29  -0.345 0.15  
Aging (65+) % 0.845 0.01  0.815 0.01  

Average Family Size 0.077 0.08  0.074 0.08  
College Degree % 0.518 0.05  0.575 0.04  

Car Use for Transportation % 0.320 0.03  0.376 0.01  
Median Family Income -0.012 0.10  -0.014 0.05  

Number of Road Closures 0.007 0.07  0.007 0.06  
Average Day Roads Closed 0.063 0.00  0.060 0.00  

∑ Length of OH Power Lines 0.010 0.02  0.011 0.01  
∑ Length of UG Power Lines 0.001 0.40  0.001 0.46  

Maximum Wind Speed 0.002 0.22  0.002 0.20  
∑ Generated Trips / ∑ Population 0.007 0.06  0.007 0.05  

𝜆𝜆 0.703 0.00  - -  
𝜌𝜌 - -  0.523 0.01  

Number of observations: 160, Number of variables: 12 
Abbreviations β: estimated coefficient mean, p: p value, ∑: Total,  SEM: Spatial error 

model, SAR: Spatial mixed-autoregressive model 
 

2.5 Conclusions 

In this study, the hurricane-induced power outages were investigated spatially and 

statistically in order to comprehend the regional variations of the hurricane’s impact on the 

city infrastructure as well as different demographic and socioeconomic groups. This is 

performed through analyzing the data based on the adverse consequences of a recent 

Hurricane Hermine that hit the City of Tallahassee. Spatial analysis was performed in order 

to identify the highly-affected areas based on the “percentage of affected customers” 

metric. Spatial autoregressive modeling, on the other hand, provided critical information 

about the association between the magnitude of affected customers and several variables 

related to demographics, socioeconomics, infrastructure, transportation, and hurricane 

characteristics. 
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The information gained by such investigation of hurricane-induced power outages 

can assist emergency officials in identifying critical and less resilient regions, and 

determining those demographic and socioeconomic groups which were more affected by 

the adverse consequences of the hurricane. For example, the analysis showed that the 

higher the percentage of aging (65+) residents, the higher the percentage of affected 

customers. This indicates the need for addressing those problems related to infrastructure 

and power system components at those regions where more 65+ populations live. Another 

critical finding is that the magnitude of power outages appeared to be increasing in regions 

which generate more trips. This is critical since the total generated trips generally reflect 

the magnitude of travels starting from a zone, and usually residential areas generate higher 

number of trips. In addition, the roadway infrastructure also appears to be crippled in those 

regions. For a more resilient community, this transportation perspective should be 

considered, and disruptions in these areas should be prevented in order to maintain the 

economic and social quality of life in the city.  

There are several limitations of this study. For example, there were not enough 

number of weather stations to find the maximum measured wind speeds to cover the whole 

study area, and there were a number of census block groups without wind speed 

measurements. Therefore, measurements of the wind stations closest to these census block 

groups were used in the analysis. This assumption might have created some errors related 

to estimating the effect of maximum wind speed on the magnitude of power outages. 

Furthermore, hurricane-related roadway closures were obtained from the online requests 

and the DigiTally database, which mainly shows online requests from the city residents. 

Therefore, it is possible that there may be other locations which were not reported online 
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by the residents. This might be a drawback of data source in terms of reflecting the actual 

extend of roadway closures. Moreover, the impact of only Hurricane Hermine was 

investigated in this study due to data availability. However, as a future study, the impact of 

Hurricane Irma will be investigated and compared with the findings of this study if and 

when the data for this recent hurricane is available to the authors. 
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Chapter 3 Measuring the Accessibility of Critical Facilities in the Presence of 

Hurricane-related Roadway Closures and an Approach for Predicting Future 

Roadway Disruptions 

Roadway closures magnify the adverse effects of disasters on people since any type 

of such disruption increases the emergency response travel time (ERTT), which is of 

central importance for the safety and survival of the affected people. Especially in the State 

of Florida, high winds due to hurricanes, such as the Hurricane Hermine, lead to notable 

roadway disruptions and closures that compel special attention. As such, in this chapter, the 

accessibility of emergency response facilities, such as police stations, fire stations and 

hospitals in the City of Tallahassee, the capital of Florida, was extensively studied using 

real-life data on roadway closures during Hurricane Hermine. A new metric, namely 

Accessibility Decrease Index (ADI), was proposed, which measures the change in ERTT 

before and in the aftermath of a hurricane such as Hermine. Results clearly show those 

regions with reduced emergency response facility accessibility and roadways under a 

disruption risk in the one-week window after Hermine hit Tallahassee. City officials can 

pinpoint these critical locations for future improvements, and identify those critical 

roadways, which are under a risk of disruption due to the impact of the hurricane. This 

information can be utilized to improve emergency response plans by improving the 

roadway infrastructure and providing alternative routes to public. 

3.1 Introduction 

Roadway closures magnify the adverse effects of disasters on people since any type 

of such disruption increases the emergency response travel time (ERTT), which is of 

central importance for the safety and survival of the affected people. An emergency 
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response plan, therefore, should include strategies to evaluate the conditions of existing 

roadway networks during and in the aftermath of disasters such as hurricanes (e.g., many 

strategies have been developed to alleviate the suffering of public after the infamous 

Hurricane Katrina). Within such plans, the available transportation network should be 

evaluated with respect to disasters using historical data and/or predictions in order to assess 

the roadway conditions, and identify the critical locations. Especially in the State of 

Florida, high winds due to hurricanes, such as the Hurricane Hermine, lead to notable 

roadway disruptions and closures. Even the lower strength storms may still be strong 

enough to adversely affect the transportation network (i.e., roadway disruptions and 

closures due to fallen trees, which will definitely cripple the emergency response 

operations. Focusing on this accessibility-based analysis is especially critical since 

providing necessary aid to hurricane victims in a timely manner can alleviate possible 

adverse consequences of hurricanes.  

Previous research shows that transportation accessibility has been a special interest, 

especially given the advances in computational power that has enabled the analysis of more 

computationally complex problems. Numerous studies have focused on the accessibility of 

critical facilities such as supermarkets [1], nursing homes [2], health care facilities [3, 4], 

multimodal facilities [5], and shelters [6]. These studies take advantage of Geographical 

Information Systems (GIS)-based tools to perform accessibility analysis. However, to the 

authors’ knowledge, there has not been a study that focused both on emergency facility 

accessibility based on real-life disaster data and prediction of future roadway disruptions. 

As such, the objective of this study was twofold. First, accessibility of emergency response 

facilities such as police stations, fire stations and hospitals in the City of Tallahassee, the 
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capital of Florida, was extensively studied using real-life data on roadway closures due to 

Hermine. This was achieved by the temporal reconstruction of the reported roadway 

closures on the Tallahassee roadway network in the one-week window after Hermine hit 

Tallahassee. Furthermore, new metric, namely Accessibility Decrease Index (ADI), was 

proposed, which measures the change in ERTT before and in the aftermath of a hurricane 

such as Hermine. That is, ADI value is equal to the ratio between ERTT before and after a 

hurricane. As a result of this approach, regions with reduced emergency response facility 

accessibility were identified. In order to calculate the ADI values, eight minutes threshold 

value was selected for after-hurricane ERTT based on the existing literature [7-10]. For 

those regions with after-hurricane ERTT values higher than this threshold, ADI scores were 

calculated and illustrated since these regions are critical for emergency response. To 

calculate travel time between two locations, there are different available costs such as 

distance, and static and dynamic congested travel time. However, in this study, it is 

assumed that actual travel time for emergency vehicles such as police, fire and rescue, and 

emergency medical services (EMS) is very close to the free flow time (FFT) considering 

that all vehicles should yield to emergency vehicles by law. 

Second, hurricane-related roadway disruption probabilities were estimated for 

major roadways, which are usually utilized as evacuation or emergency response routes. 

Note that the recent improvements in the technology increased the availability of the 

satellite images. This fact along with the development of image recognition techniques led 

to many studies in the literature in the context of satellite images data extraction [11, 12]. 

The concept of Convolutional Neural Network (CNN) was introduced in 1997 [13]. 

Unfortunately, the computational power of computers was not sufficient at the time, and it 
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took twenty more years for the CNN to become one of the most popular techniques in the 

machine learning field. Please see [14] for more information on CNN. Recent studies have 

also showed the incredibly high accuracy of CNN for a high number of classifiers [15]. 

Lately, CNN was also used to extract data from satellite images for land usage 

classification [16], updating road data information [17], and for high wind risk analysis 

[18-21]. In the current research, we used CNN and satellite images to investigate the 

hurricane-related roadway disruption probabilities by recognizing and classifying tree types 

along major roadways, calculating their fragility to wind speeds. Those results can be used 

for analyzing critical roadways, which can be disrupted by tree failures. City officials can 

pinpoint these critical locations for future improvements and enhancing emergency 

response plans. 

3.2 Study Area, Hurricane Hermine and Data 

The City of Tallahassee, the capital of Florida, being the most populated city in the 

Leon County, hosts 286,272 people, and is home to two major universities and a 

community college. The urbanized area of Tallahassee has a population of 190,894 

according to the US Census estimate [22]. The City of Tallahassee is a full service 

municipality providing essential services to the region: electric, gas, water solid waste, 

sewer, public works, airport, mass transit, etc. During emergency situations and disasters, 

the City of Tallahassee recognizes that a transportation system functions as a whole, and 

requires that each piece work together at all levels (i.e. institutional and operational) so that 

the system runs safely and efficiently.  

Tallahassee was hit by Hurricane Hermine in September, 2016. Hermine provoked 

disruptions in all services in Tallahassee from 10:00 PM of September 1st, 2016 to 4:00 

52 



AM of the next day September 2nd, affecting thousands of customers. Tallahassee radar 

images [23, 24] show the time and path of Hermine as in Figure 3.1. Please refer to the 

Hermine report by NHC at [25] for detailed information. Maximum speeds reached during 

Hurricane Hermine varied for different parts of the city (Figure 3.2a). These high wind 

speeds resulted in fallen trees and roadway disruptions in Leon County (Figure 3.2a). The 

roadway closure data is provided by the City of Tallahassee, through a mobile app called 

Digitally [26]. It is a tool that connects residences directly with City of Tallahassee staff in 

order to resolve issues more effectively and efficiently. Users can file requests for any 

issues and monitor others. During Hurricane Hermine, 776 roadway closures were reported 

due to fallen trees in a one-week window (Figure 3.2b). Note that, 7th day closures shown 

in Figure 3.2b do not indicate that those closures occurred on 7th day, but correspond to 

closures which exist until 7th day. In case of an emergency, police (law enforcement), fire 

and hospital response teams are dispatched to locations of the emergency. In Tallahassee, 

five hospitals, thirteen fire stations, and fourteen police stations are ready to serve the 

public (Figure 3.2c) [27]. 

  

Figure 3.1. Hurricane Hermine Path over Tallahassee, FL from 09/01/16 to 09/02/16 
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(a)                                     (b)                                         (c) 

Figure 3.2. Study Area (a) Wind Speeds by U.S. Census Blocks during Hermine (b) 
Roadway Closures (c) U.S. Census Blocks and Emergency Response Facilities 

3.3 Methodology 

3.3.1 Accessibility of Emergency Response Teams 

Following the temporal reconstruction of the events related to the Tallahassee 

transportation network (e.g., roadway closures due to fallen trees), the ArcGIS “Network 

Analyst” tool was used to measure the transportation accessibility from police stations (law 

enforcement), fire stations, and hospitals. Three components were identified as part of the 

approach: (a) origins: police stations, fire stations, and hospitals, (b) destinations: U.S. 

Census block centroids, and (c) the roadway network. To find the least cost paths between 

origins and destinations (O-D pairs), an ArcGIS “OD Matrix” analysis was performed. 

Travel of the emergency vehicles was assumed to originate at the origin locations, and end 

at the census block centroids, based on the least cost path. It was assumed that actual travel 

time for emergency vehicles such as police, fire and rescue or emergency medical services 

(EMS) is very close to the free flow time (FFT) considering that all vehicles should yield to 

emergency vehicles by law. A threshold value for the response time was selected based on 
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the literature, which states that emergency response time should not exceed approximately 

eight minutes [7-10]. For one week period, travel times were derived to identify the 

transportation accessibility metric considering each days’ roadway closures in the city. For 

the census blocks with more than eight minutes accessibility and roadway closures due to 

fallen trees, travel times were compared to daily free flow time. For this purpose, a new 

metric, namely Accessibility Decrease Index (ADI), was proposed. ADI value is equal to 

the ratio between emergency response travel time (ERTT) before and after a hurricane 

event as defined in Equation 1, which is always bigger than 1. Note that, ADI values were 

not calculated for the locations where ERTT after the hurricane is still lower than the 8 

minutes threshold duration, which indicates that those locations still have acceptable 

emergency response time. This analysis revealed those regions which has critical 

emergency response problems due to inaccessibility during and after the Hurricane 

Hermine. 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑓𝑓(𝑥𝑥) = �
𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

, 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 8 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁/𝐴𝐴         , 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 8 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
  (1) 

3.3.2 Sensitivity Analysis for Estimation of Roadway Disruption Probability 

The estimation of roadway disruption probability is a multi-step problem. The first 

step was to take satellite image as an input, and recognize all trees that can affect roadways 

during a hurricane (Note that Figure 3.3a shows a typical satellite image for the analysis 

used in this study). The CNN methodology was utilized in order to recognize the trees from 

these satellite images. It was assumed that the trees that should be taken into consideration 

were in 10 meters from the center of the road. To start with, two separate CNN were 

trained to identify the number and types of trees around the roadways. The first CNN-1 was 
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used to recognize the trees from the satellite image while the second CNN-2 identified the 

tree type selection from the pre-selected images identified by CNN-1. The training set was 

composed of 8,000 images for CNN-1 and 2,000 for CNN-2. The size of the images was 

76x76 RGB pixels. The training pictures were manually selected from the City of 

Tallahassee satellite images. Two networks were tested on the 10% of the images and 

exceeded 97% and 93% accuracy for the CNN-1 and CNN-2, respectively. 

The second step was to classify the selected trees based on their species. According 

to City of Tallahassee, there are four common tree species in Tallahassee namely lobby 

pine, shortleaf pine, sweetgum, and live oak. The third step was to approximate the 

geometric and structural characteristics of these trees. Color thresholding method was used 

to calculate the crown diameter [28, 29]. The crown diameter was used to approximate the 

other tree parameters (e.g. weight of the crown, height of the crown, etc.) necessary to 

calculate failure probability and data from [30] was used for this task. The next step was to 

estimate the tree fragility curves for all recognized trees. Several studies have been 

published on the probability estimation of tree failure induced by high winds [31-34]. In 

this study, the model given in Equation 2 was used for the failure probability estimation. 

The model involves one failure damage mode which is failure by rupture. Figure 3.3b, 

Equation 2, Equation 3, and Equation 4 illustrate the procedure used for failure calculation. 

The wind model [35] is described by Equation 2: 

𝑉𝑉𝑧𝑧 = 𝑏𝑏 �
𝑧𝑧

10
�
𝛼𝛼
𝑉𝑉 (2) 

where b and α are constants, z is the height of tree measured from the ground, and V is the 

wind speed at 10 meters above the ground. The equal wind speed was assumed along the 

crown of the tree. Equation 3 characterizes the maximum force moment caused by the wind 
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speed, where the forces 𝐹𝐹1 and 𝐹𝐹2 are caused by wind speed 𝑉𝑉𝑧𝑧, and 𝐹𝐹3 represents the force 

produced by the weight of the crown, ∆𝑥𝑥 is a initial deflection produced by forces 𝐹𝐹1 and 

𝐹𝐹2. 

𝑀𝑀 = 𝐹𝐹1 ∙ ℎ1 + 𝐹𝐹2 ∙ ℎ2 + 𝐹𝐹3 ∙ ∆𝑥𝑥 (3) 

The failure is considered when Equation 4 is satisfied: 

𝜎𝜎𝑟𝑟 < 𝜎𝜎 (4) 

where 𝜎𝜎 is the maximum stress in the cross section of the tree caused by the moment 𝑀𝑀 and 

𝜎𝜎𝑟𝑟 is the modulus of rupture, which depends on the specie of the tree. The Monte Carlo 

simulation was applied in order to calculate the fragility curves for each tree. Figure 3.3c 

shows examples of fragility curves for the Shortleaf Pine. The final step was to calculate 

the probability of roadway disruption. Based on the fragility curves developed for each 

particular tree, the overall probability of roadway disruption, 𝑃𝑃𝑟𝑟, was calculated, where 𝑃𝑃𝑟𝑟 is 

the occurrence probability of at least one of the 𝑁𝑁 events 𝑃𝑃(𝐸𝐸𝑖𝑖), and each event represents a 

failure of a tree along the roadway segment (Equation 5). Note that, the calculated 

probability corresponds to probability of at least one tree failure along a roadway segment, 

and this probability was referred as the roadway disruption probability. However, failure of 

a tree does not necessarily indicate a roadway closure since the fallen tree may or may not 

block the roadway. Therefore, the calculated probability was called the “disruption 

probability” rather than “closure probability.”  

𝑃𝑃𝑟𝑟 = 1 −��1 − 𝑃𝑃(𝐸𝐸𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

 (5) 
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where 𝑃𝑃𝑟𝑟 is the roadway segment’s disruption probability, 𝑖𝑖 = 1, … ,𝑁𝑁 and 𝑁𝑁 is the total 

number of trees along that roadway segment, and 𝑃𝑃(𝐸𝐸𝑖𝑖) is the probability of failure of tree 

𝑖𝑖. 

 

Figure 3.3. (a) A satellite image after classifying trees, (b) Tree failure model (c) 
Probability of roadway disruption for Shortleaf Pine. 

3.4 Results  

3.4.1 Accessibility of Emergency Response Teams 

Figure 4a shows the free flow travel times from fire stations to census blocks. Major 

portions of the Southeast Tallahassee and Eastern Tallahassee appear to experience 

emergency response travel times (ERTT) greater than eight minutes. Note that, these 

locations are ‘major’ geographically speaking, but not as ‘major’ demographically 

speaking. Southeast Tallahassee is a growing residential zoning area, available for future 
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developments, drawing high attention for investors. Even without the focus on emergency 

response planning, those regions might be considered for future improvements (e.g., 

building a new fire station) to decrease the emergency response time. Rest of the maps in 

Figure 4 displays the change in the ERTTs. Note that, all the highlighted census blocks are 

the ones that have eight minutes or more travel times from fire stations. Accessibility 

decrease index (ADI) in these maps shows the amount of change in the emergency 

response travel time before and after the hurricane event. For instance, if the free flow 

travel time from one station to a census block was 5 minute before hurricane and 15 

minutes after the hurricane (due to roadway closures), the ADI equals to three (15/5=3). 

Note that, there were no road closures in Day 1 since the hurricane hit the city later in the 

evening of Day 1. Also note that, since Day 2 and Day 3 roadway conditions were almost 

identical, the analysis results were shown from Day 3 (Figure 4, Figure 5 and Figure 6).  

Figure 4b shows that there are pockets of census blocks experiencing significant 

changes in ERTTs, and a significant decrease in accessibility for Day 3, two days after the 

Hermine hit Tallahassee. In the northeastern southeastern sections of the city, ADI was less 

than two times. Pockets with ADI values larger than ten were observed mostly in local 

roadways where residential townhouses are located. Note that Tallahassee has regions that 

heavily inhabit trees with different types and heights all over the city. Figure 4c shows a 

clearance in the north and northeastern part in terms of ERTT value on Day 4. This is since 

the roadways were cleared from trees, ERTTs for fire stations returned to normal in those 

sections of the city. Pockets with ADI larger than ten have still experienced higher travel 

times since Day 3. Between Day 4 and Day 5, there was a slight change in ERTT from fire 

stations to census blocks. Roadway closures still led to inaccessibility in Day 5 for those 
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pockets with the highest ADI. Recall that, those areas are located around neighborhoods 

with townhouses and local streets (mostly two-lane), which are more prone to roadway 

closures due to fallen trees than major highways. On Day 6 and Day 7 (Figure 4e and f), 

ERTTs for fire stations returned to daily levels as Figure 4a shows.  

Figure 5a shows that major sections of the north, northeast and southeast of 

Tallahassee experience ERTTs above eight minutes. Similar to the previous analysis, these 

sections are also open to further development even without considering emergency 

response. Observing Fig. 5, the northern Tallahassee seems to be struggling in terms of 

accessibility to police stations in the whole one-week window. Since there was not a 

present police station in the southern Tallahassee, residences experienced reduced 

accessibility compared to accessibility to fire stations (Figure 4) until Day 7 (Figure 5f). 

Note that, the accessibility may be better in real life since police vehicles may already be 

on patrol in the communities. However, under emergency conditions such as hurricanes, 

roadways may be closed or disrupted, and hence they may not be able to patrol the area. 

Northern Tallahassee experienced the same problem, and ERTTs did not return to normal 

until Day 7. Pockets with the highest ADIs eventually returned to normal conditions on 

Day 6 (Figure 6e). Those regions might be considered for infrastructure improvements or 

new landscape developments in order to manage tree failures.  

Unlike fire and police stations, hospitals are heavily clustered in a certain area. This 

might be disadvantageous for certain regions even under normal conditions. As Figure 6 

shows, a major portion of the City of Tallahassee experiences accessibility problems 

related to hospitals. Due to this critical inaccessibility, numerous pockets of census blocks 

were observed to have high ADI values. Day 4 shows that the closest pockets to the 
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northernmost hospital were in a better shape in terms of roadway closures compared to Day 

3. On Day 5 (Figure 6d), a clear improvement was observed in ERTTs from hospitals to 

census blocks in the northern and northeast sections of Tallahassee. South of Tallahassee 

still had small pockets of census blocks with high ADIs. Figure 6f shows that even 7 days 

after hurricane, those parts were still experiencing a lack of accessibility to hospitals. 

 

a)                                                b)                                                c) 

 

d)                                                e)                                                f) 

Figure 3.4. Accessibility for Fire Stations 
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a)                                                b)                                                c) 

 

d)                                                e)                                                f) 

Figure 3.5. Accessibility for Law Enforcement (Police Stations) 

 

a)                                                b)                                                c) 

62 



 

d)                                                e)                                                f) 

Figure 3.6. Accessibility for Hospitals 

3.4.2 Sensitivity Analysis for the Estimation of Roadway Disruption Probability 

As Figure 3.2a clearly shows, Hermine hit different section of the town with 

different wind speeds. Wind speeds were ranging between 14 mph to 48mph, which caused 

776 roadway closures all over the town (Figure 3.2b). Note that wind speed data was 

collected through 43 weather stations [36] around the city as shown in Figure 3.2a. It 

should also be noted that a different Hurricane can have different path than Hurricane 

Hermine. In order to propose a more scalable approach, this section presents a sensitivity 

analysis for estimating possible roadway disruptions. The analysis was conducted using 

435 roadway sections to estimate the roadway disruption probabilities based on the 

proposed CNN methodology. Note that, these sections are demarcated by intersections, and 

individual satellite images was extracted for each roadway section. In order to show the 

usefulness of this approach, five major highway corridors were selected: (1) I-10, which 

starts from the City of Jacksonville in the east, passing through Tallahassee and continuing 

west towards the City of Pensacola, (2) US-90 which lies parallel to I-10, passing through 

the downtown Tallahassee, (3) US-319, which extends from Georgia along the Gulf Coast 
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through downtown Tallahassee, (4) US-27, which begins in the southern Florida and 

extends to the Georgia State border, and (5) SR-263, or Capital Circle SW, which encircles 

Tallahassee. Note that, probability of roadway disruption would increase with the 

increasing number of trees along the roadway section. Figure 3.7a shows the disruption 

probability for a 20 mph wind speed. For all the major highways, probability is below 0.10. 

Only one roadway has a probability of disruption between 0.20 and 0.30. When wind speed 

increased to 25 mph, roadways around hospitals started experiencing roadway disruption 

probabilities of 0.70 to 1.00 (Figure 3.7b). With the 30 mph wind speed, 90% of the major 

roadways around emergency response facilities experienced a probability of roadway 

disruption of at least 0.70. Capital Circle South, lying from west to east at the bottom of the 

figures, do not have substantially high roadway disruption probability until 40 mph, which 

is mostly different than other major roadways. This might be due to the fact that shoulders 

and sections along this roadway do not have substantial number of trees like other major 

roadways, or shoulders may be more than enough in terms of length so that a fallen tree 

cannot affect the roadway. Right after the hurricane, this roadway section (Capital Circle 

South) can be a safe passage for emergency response. In the western sections of the city, 

where fire stations and police stations are clustered, major roadways have experienced high 

probabilities of roadway disruption with 40 mph wind speed. City officials might consider 

providing alternative routes for the emergency response possibilities for future hurricanes 

in these locations. 50 mph wind speed, as shown in Figure 3.7e, causes 95% of the major 

roadway sections to have probabilities higher than 0.70. This also indicates the need to 

have emergency plans and strategies to find the safest and fastest routes for efficient 

emergency response operations. 
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a)                                                b)                                                c) 

 

d)                                           e) 

Figure 3.7. Roadway Disruption Probabilities on the Major Highways of Tallahassee 

3.4.3 Comparison of Predicted Roadway Disruptions and Roadway Closures Reported 

During Hurricane Hermine 

The proposed prediction model was utilized in order to find the roadway disruption 

probabilities of roadway segments under different wind speeds experienced during 

hurricane Hermine. To do this, first, each roadway segment was assigned the 95th 

percentile wind speed measured at the weather station closest to that roadway segment. 

Based on these wind speeds, roadway disruption probability of each roadway segment was 
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found and roadways were mapped based on this probability (Figure 3.8). Following, a 

kernel density estimation (KDE) [10] approach was utilized to find the roadway closure 

density in the City of Tallahassee, which produced a closure density surface. Visual 

inspection of the Figure 3.8 indicates that there is a substantially strong spatial relationship 

between high closure density locations and roadway disruption probabilities. That is, the 

relationship trend implies that the higher the closure density, the higher the disruption 

probability. It is worth noting that there are roadway segments (a) with high disruption 

probability where closure density is relatively smaller and (b) with low disruption 

probability where high closure density is observed. However, note that the roadway closure 

data is obtained from DigiTally app [26] which is composed of user reported roadway 

closures. Therefore, the roadway closure data at hand does not represent all of the closures 

experienced during the hurricane (particularly local roadways are overrepresented due to 

the immediate access of the residents to these roadways). Moreover, the predicted 

probabilities are roadway disruption probabilities rather than closure probabilities. That is, 

a disruption may or may not lead to a closure which would not be reflected by the closure 

data. Nevertheless, Figure 3.8 still illustrates a significant spatial relationship between 

closure density and roadway disruption probability. 
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Figure 3.8. Comparison between disruption probability and reported closures 

3.5 Conclusions  

This study presents a GIS-based methodology to assess and analyze the 

accessibility to critical emergency facilities (e.g., police stations, fire stations and hospitals) 

in the context of roadway disruptions due to disasters such as hurricanes. A new metric, 

namely Accessibility Decrease Index (ADI), was proposed, which measures the change in 

the emergency response travel time (ERTT) before and in the aftermath of a hurricane such 

as Hermine. ADIs were used to identify those regions with reduced accessibility to 

emergency facilities in the aftermath of Hermine. In order to propose a more scalable 

approach, which can help city officials planning for future hurricanes, a tree failure 

modeling approach was also presented in order to estimate the probability of hurricane-
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related roadway disruptions under different hurricane wind speeds based on a 

Convolutional Neural Network (CNN)- and satellite image-based approach. 

City officials can pinpoint the identified critical locations for future improvements 

(i.e., landscaping modifications to eliminate the threat of fallen trees, and roadway 

geometry modifications), and enhancing emergency response plans (i.e., providing 

alternative routes to emergency response crews). Officials might consider having such 

plans in place for future hurricanes in the critical sections of the city depending on the 

facility type. There may be other alternatives such as patrolling emergency services, or 

establishing new emergency response facilities in these sections. Note that any suburban 

location close to the city can also be supported by these activities. However, this study 

focused only on the City of Tallahassee, and the proposed approach can be extended to 

other locations. Another caveat of this study is as follows: If roadway sections get longer, 

the probability of roadway disruption substantially increases with more trees along these 

sections. Therefore, as a future work, shorter and/or equal-length roadway sections can be 

considered to increase the accuracy and reliability of the proposed approach. Future work 

also will focus on the effect of tree failures on downed power lines in addition to roadways, 

which will definitely be a more comprehensive analysis to solve disruption-related 

problems in the aftermath of a hurricane. 
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Chapter 4 Senior Community Resilience with a Focus on Critical Transportation 

Infrastructure: An Accessibility-based Approach to Healthcare 

The importance of bridges to mobility in transportation is well known. However, 

the identification of bridges that influence senior mobility has not been evaluated. This is 

imperative because of human frailties associated with aging. In this chapter, senior 

community resilience is assessed through accessibility of seniors to hospitals after bridge 

damage caused by hurricane events. Pinellas County in the Tampa Bay area is used as case-

study. The following results are presented: (i) exposure probabilities for hurricane events at 

bridge locations; (ii) bridge damage state functions and damage state rating assignments 

using historical data from the National Bridge Inventory (NBI) database; (iii) identification 

of bridges at risk to hurricane-induced damage; (iv) bridges identified as serving areas 

(census districts) with dense population of aging people; and (v) the estimated effects of 

bridge closures on mobility and resilience of the aged population, based on accessibility to 

hospitals by using congested and free flow travel times obtained from traffic assignment 

modeling. Findings showed that: (i) 66 bridges prone to hurricane-induced damage were 

observed to affect 140 selected aging population areas; (ii) bridge closures resulted in about 

15% and 75% increase in free flow and congested travel times, respectively; (iii) complete 

loss of accessibility to hospitals for some aging-dense zones; and (iv) resilience indexes of 

0.94 and 0.81 were computed for free flow and congested travel times, respectively. These 

results which highlight significant loss in senior accessibility to hospitals, emphasize the 

need for policy discussions on the capabilities of highway bridges for efficient senior 

mobility. 
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4.1 Introduction 

Transportation infrastructure are essential components of intermodal facilities and 

important to the reliability, accessibility and resilience of communities. The damage of 

civil bridge infrastructure poses a major threat to the overall resilience of communities [1]. 

With the increasing impact of climate change on the environment, different countries and 

states stand the chance of being vulnerable to natural disasters such as hurricanes, 

tornadoes and floods.  

Recent occurrences of Hurricanes Harvey and Irma have created a stronger sense of 

awareness for safety during hurricane events, especially for the aging population. Hurricane 

Irma reported deaths of which many victims were the elderly (65 years and over) in the 

communities. From 2004 to 2006, five major hurricanes hit the state of Florida that left 

catastrophic devastations along their paths. The impacts of these hurricanes led to the 

damage of bridges and civil infrastructure in the state with the most significant being the 

damage of the I-10 Escambia Bay Bridge. The quantified cost of damage of bridges within 

the two years were reported as amounting to about $500 million [2]. Natural and man-made 

hazards have been postulated to have a synergistic effect in the event of failure. Their 

impacts have led to road posting and bridge closures for serviceability and structural review 

due to physical damage and the consequent disruption of the transportation network [3-5]. 

Bridge closures have also been determined to have enormous implications on transportation 

user cost at the regional level [6]. 

Bridge elements such as sign structures, movable bridge elements, trusses and 

railings have been considered to have high extent of damage in the event of hurricanes [7]. 

With the growing concern for climate change (sea level rise and unexpected storms) and its 
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implication, the risk of hurricane induced floods in Florida is high as most of its cities are 

at low elevations. Bridges located in high tides and tropical storm zones have experienced 

unseating of decks, undermining of approach slabs, and deterioration of slope protections, 

channels, culverts, footing and walls. Probabilities of scouring, vessel collision and 

advanced deterioration have been reviewed by past research to ascertain the likelihood of 

occurrence of hurricanes and other hazards and their respective impacts [2, 8, 9].  

The concept of community resilience can be explained by the capacity for social 

units to mitigate hazards, contain its effects after the occurrence, and strategically recover 

to normal levels of activity [10-12]. As we near 2050, it is expected that the oldest age 

categories will grow in both numbers and proportions. This changing age structure of the 

population will affect both families and society [13]. This indicates the need for more 

resilient communities for the seniors. Resilient communities are unequivocally vital to the 

safety of a society with a gradually increasing aging population. Recent literature based on 

the 2010 Census indicates that Florida had the highest percentage of people 65 years and 

over, representing 17.3% of the total population of the state [14]. 

Several studies have also revealed the aging population’s need for shelters during 

hazard events [15, 16] while many others have cited the disproportionate effects of 

disasters on frail older adults; records from the Hurricane Katrina indicated that 49% of 

those who died were over the age of 75 years [17]. To compound the situation, about 80% 

of older adults presently have at least one chronic condition such as heart disease, cancer, 

diabetes, or stroke, while 50% have at least two [18]). Congestion during evacuation 

activities means that majority of nursing homes and assisted-living facilities would have to 

shelter in place. Asking the elderly to sit in a bus and making them stay on the road for 
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hours is not the best for their health. This means post-disaster emergency management 

must enable easy and safe access to healthcare facilities. Road closures or bridge damages 

can lead to travel delays and increased fatalities among the more frail aging population. 

The need for building and maintaining infrastructure of relevance to the aging population 

cannot be overstated. Resilient communities are essential in ensuring the safety and well-

being of individuals living in the community, especially during hazard events.  Previous 

studies in this field include research on the role of interdependencies in community 

resilience [19] and a place-based model for evaluating community resilience [20]. 

The primary focus of this chapter is to assess senior community resilience by 

considering the physical transportation infrastructure within the communities. The chapter 

investigates three issues regarding community resilience, with a focus on bridge 

infrastructure: (1) the identification of coastal bridges susceptible to hurricane damage; (2) 

the expected damage condition/states evaluation of the exposed bridges focusing on critical 

bridges significant to aging mobility; and (3) the development of performance measures for 

the assessment of the impact of the closures of selected bridges on senior mobility. Using 

historical condition data from NBI, these effects are evaluated at the network level for the 

case study region. The above is further explained with a developed resilience index. 

4.2 Methodology 

In order to achieve the goals for this chapter, the analysis followed these sequential 

steps: (i) computing exposure probabilities for categorical hurricane events at bridge 

locations; (ii) developing and applying damage state functions in allocating damage states 

to bridges using both historical and NBI data fields; (iii) identifying bridges at risk to 

hurricane-induced damage; (iv) identifying the bridges affecting aging-dense areas; and (v) 
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estimating the effects of bridge closures to aging mobility and resilience through 

accessibility to hospitals based on congested and free flow travel times obtained from 

traffic assignment modeling. The framework for bridge selection illustrated in Figure 4.1. 

 
Figure 4.1. Framework for identifying damaged bridges critical to aging-dense areas 

 
4.2.1 Computing Exposure Probabilities for Categorical Hurricane Events at Bridge 

Locations 

Coastal bridges have been identified as critical during storm surges and wave 

loadings resulting from hurricane events. Many studies have therefore focused on the 

vulnerability of coastal bridges to storm surges and wave loading, and consequences in 

terms of agency and user costs [6, 21-23].  
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To forecast the occurrence of hurricanes based on historical records, the number of 

storm arrivals at an exact coastal location in a single year is being modeled as Poisson 

distribution. In this chapter, more specific attention was given to Category 3 Hurricanes 

due to Florida’s coast being prone to such storms and the resulting debilitating effects on 

physical infrastructure and mobility. Using Hazards United States (HAZUS) software wind 

data [24], the exposure probabilities (Figure 4.2) were thus estimated. Wind speeds 

assigned to each census tract were categorized using the well-known Saffir-Simpson 

Hurricane Wind Scale from the National Hurricane Center. Number of storms arriving at a 

location in one year is defined as: 

𝑃𝑃𝑛𝑛 = 𝜆𝜆𝑛𝑛exp (−𝜆𝜆)
𝑛𝑛!

                                                           (1) 

𝐹𝐹𝑇𝑇(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 ≤  𝑡𝑡) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒[−𝜆𝜆𝜆𝜆]                                                       (2) 
 
where  

 𝑃𝑃𝑛𝑛 - probability of 𝑛𝑛 number of storms occurring in a year, and 

 λ - mean rate of storms per year 

 𝐹𝐹𝑇𝑇(𝑡𝑡) – cumulative distribution function of an exponential random variable, T, and t is a 

random variable representing a given period 
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Figure 4.2. Map indicating Hurricane category 3 exposure probabilities for NBI bridges in 
the State of Florida 

4.2.2 Developing and Applying Damage State Functions in Allocating Damage States to 

Bridges Using both Historical and NBI Data Fields 

In assessing the performance of bridges in the case study region, pertinent prior 

studies on the impact of different hurricanes on bridges in different states of the country 

were consulted, to evaluate operational and traffic characteristics. The levels of damage 

were assessed through probability analysis in addition to the engineering expert decision 

making to predict the expected damages to bridges in the region. Different coded fields 

(Figure 4.3) from NBI database were also utilized for the analysis. The database fields such 

as deck ratings, superstructure ratings, substructure ratings, culvert and channel ratings, are 

evaluated along with other explanatory variables such as age, location of bridge, type of 

bridge (fixed or movable), waterway adequacy, and traffic characteristics. From the data, 

damages are categorized into slight, moderate, extensive or complete levels based on the 
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categories previously developed [2]. Table 4.1 is a qualitative description of the bridge 

damage states. 

 

Figure 4.3. NBI fields selected for computing bridge damage states 

A total of 82 damaged bridges from Florida, Louisiana, Mississippi and Alabama 

were used in mapping out the damage state of bridges in the case study region of this 

research. There were 25% of the bridges categorized as movable bridges, with the 

remaining being fixed bridges of different types. Based on an extensive review of damage 

history, the movable bridges are expected to suffer different levels of impact ranging from 

damage of elements such as the operator facility, failure of gates, signals and motors due to 

wind, and storm impacts to mechanical and electrical faults.  On the other hand, fixed 

79 



bridges are anticipated to fail through unseating of decks, scouring, failure of slope 

protection and abutments as well as pier and column failure due to barge collision.  

Table 4.1. Qualitative Damage State Descriptions Defined by Amending HAZUS for 
Typical Hurricane-Induced Bridge Damage 
 

Damage 
state Hazard Type Description 

Slight 

Hurricane 
(Bridges) 

Debris (tree logs, boats etc.) insignificant scour, minor damage to channel, 
and damage to non-structural elements such as street lights, luminaires, 
lamps, mounted lights, small signs, and railing. Poses no serious structural 
problem. Structure may need minor repairs. 
Minor damages such as loss of sign panels, twisting of luminaires, etc. 
Poses no serious structural problem. Structure may need minor repairs 

Hurricane  
(Sign Structures) 

Minor damages such as loss of sign panels, twisting of luminaires, etc. 
Poses no serious structural problem. Structure may need minor repairs 

Moderate 

Hurricane 
(Bridges) 

Washouts at embankments/approach slabs and damage to slope protection 
system. Overtopping due to flood (deck/slab or culvert) and significant 
scour. Moderate damages including undermining, to abutments, columns, 
piles, caps, footings, channel, and bulkhead. Moderate damages to fenders, 
navigational lights, warning gates, traffic signals, operator facilities, 
electrical conduit, cables, PLCs, transformers, and equipment. Poses serious 
structural/functional problems. Structure is repairable. 

Hurricane  
(Sign Structures) 

Loss of horizontal members, and minor cracks on foundation. Moderate 
damage to horizontal, vertical members, or foundation. Poses serious 
structural/functional problems. Structure is repairable. 

Extensive 

Hurricane 
(Bridges) 

Extensive damage to culvert, deck, superstructure, substructure, and 
pertinent bridge elements. Structure is repairable. Poses serious 
structural/functional problems. May require full replacement of structural 
component(s). 

Hurricane  
(Sign Structures) 

Extensive damage to panels, chords, trusses, and foundation. Poses serious 
structural/functional problems. Structure is repairable. May require full 
replacement of structural component(s). 

Complete 

Hurricane 
(Bridges) 

Severe damage to all or critical structural and non-structural components. 
Structure needs to be completely replaced. 

Hurricane  
(Sign Structures) 

Severe damage to all or critical structural components. Structure needs to 
be completely replaced. 

 

A number of NBI fields were selected to assess the individual bridge operational 

characteristics and ratings. Four key variables were found to be statistically-correlated to 

the damage states of bridges based on the movable bridge data. These fields with 
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correlation coefficient of 30% and higher were the superstructure condition rating, 

substructure condition rating, posting evaluation, and scour critical condition. For fixed 

bridges, the key fields which were observed to have high correlation with levels of damage 

were the deck condition rating, superstructure condition rating, substructure condition 

rating, inventory rating, deck geometry evaluation, and scour critical condition. To assign 

the level of damage of bridges some assumptions were made, and steps followed, 

summarized as follows:  

1. Bridge damage states were categorized based on the type of bridge (either fixed or 

movable). 

2. Bridges with unknown foundations are expected to suffer the worst damage (either 

complete or extensive). 

3. Non-waterway bridges as well as bridges which are not scour critical are ranked 

based on the inventory and operational characteristics (deck, superstructure and 

substructure ratings). 

4. Bridges without deck, superstructure and substructure such as culverts and channels 

are assigned damage states based on other significant NBI fields. 

5. Bridges could be assigned two damage states based on certain special 

characteristics. 

Table 4.2 represents the initial list of NBI fields used in the damage state 

assessment of bridges. 
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Table 4.2. NBI fields considered for bridge damage state assessment 

NBI Field Operational Characteristics 
Owner State, County, Local 
Functional Class Interstate / Non-Interstate 
Age Old (>=50yrs) / New(<50yrs) 
Year Reconstructed Recent / Previous 
Waterway Adequacy Adequate / Inadequate 

Scour Critical Bridges High (>3) / Low (<=3)/ Unknown 
Foundation 

Type of Service Highway / Railroad, Interchange 
Kind of Material Wood /Timber, Steel, Concrete 
Type of Design Fixed / Movable 
Condition ratings (Deck, Superstructure, 
Substructure) High (>4) / Low (<=4) 

Channel and Channel Protection Rating High (>7) / Low (<=7) 
Culverts Rating High (>8)/ Low (<=8) 
Minimum Vertical Underclearance Adequate / Inadequate 
Sufficiency Rating High (>50%)/ Low (<=50%) 
Status Functionally Adequate / Inadequate 

 

4.2.3 Discussion for Damage State Analysis 

From the analysis, it is observed that a total number of 1162 bridges out of the 1393 

fixed bridges are expected to be subjected to slight or moderate damage conditions. The 

two damage states which amount to 83% of the entire inventory were found to be in 

consonance with the evaluation made by previous studies [4, 25] where many bridges were 

estimated as slight or moderate damage levels. Further results indicated that the remaining 

bridges have equal likelihood of experiencing extensive or moderate damages with each 

damage state amounting to 8% of the entire bridge count. It is noteworthy to state that 

about 87 bridges were classified to experience either complete or extensive damage state 

because of their peculiar characteristics. A total of 313 culverts were identified from the 

inventory with about 88% of them suffering slight damage while the rest experience other 
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damage states as follows: 11% subjected to moderate damage state; 14% being extensive, 

and 12% complete damage levels, respectively. 

For the 21 recorded movable bridges, about 19% of them were expected to be 

impacted slightly, 32% of the movable bridges suffering extensive to complete damage 

levels, with 26% being extensive and 23% with complete damage.  

4.2.4 Identifying Bridges at Risk to Hurricane-induced Damage 

Bridges at risk to hurricane-induced damages were identified by combining bridge 

damage states with exposure probabilities. Storm surge heights (SSH) based on data from a 

previous Florida study [25] and the Sea, Lake, and Overland Surge from Hurricanes 

(SLOSH) model [26] were also used to identify local bridges at risk to damage. The 

SLOSH model is a computerized model developed by the National Weather Service 

(NWS) to estimate storm surge heights and winds resulting from historical, hypothetical, or 

predicted hurricanes.  

Local bridges at locations where SSH were greater than or equal to 12 feet were 

identified as being at risk to damage. The threshold of 12 feet was chosen since storm surge 

heights above that level are known to cause inundations, while SLOSH model outputs 

indicated that SSH for the case study area were mostly in the selected range. Aging-dense 

zones were selected as census block groups with over 35% of the total population being 65 

years old and above. All identified bridges within a quarter-mile radius to these locations 

were then selected as those having a direct influence on mobility to and from the aging-

dense zones. The results are shown in Figure 4.4. 
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Figure 4.4. SSH from SLOSH model and selected local bridges based on SSH threshold 
for the Tampa Bay area 
 

4.2.5 Computing Resilience 

Accessibility is used as a mobility measure in estimating the effects of bridge 

damages on commute of aged population to hospitals. This measure is expressed as the 

least cost (travel time) between origins (aging-dense zones) and destinations (hospital 

facilities) prior to and after the hurricane events. The approach is executed through the use 

of Environmental Systems Research Institute (ESRI)’s ArcGIS software, applying the 

closest facility extension. A similar concept was noted as being adopted in literature for 

determining geographic access to cancer care [27]. In our study, travel time data was based 

on the Tampa Bay Regional Planning Model (TBRPM) provided by the Florida 

Department of Transportation (FDOT)’s District 7 Metropolitan Planning Organization 

(MPO). The model was exported into ArcGIS and used to obtain origin-destination 

matrices for both free flow travel time (FFT) and congested travel times (CTT) with the aid 
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of the network analyst extension. Resilience was computed by combining measures of 

functionality and recovery times for bridge closure events as illustrated in Figure 4.5. 

 

Figure 4.5. Resilience based on bridge damage states used in this chapter 

Functionality Measure: 

𝛾𝛾𝑒𝑒𝑁𝑁(𝑡𝑡) =  𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
𝑇𝑇(𝑡𝑡)

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
𝑇𝑇(𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑)

                                                           (3) 

where: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇(𝑡𝑡) – minimum travel time for ith O-D prior to hazard 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇(𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑) – minimum travel time for ith O-D after hazard 

𝑁𝑁 – transportation network 

Resilience 

𝑅𝑅 = 1 −  1
𝑇𝑇� ∫ (1 −  𝛾𝛾𝑒𝑒𝑁𝑁(𝑡𝑡))𝑑𝑑𝑑𝑑𝑇𝑇�

0                                                     (4) 

where: 

𝑇𝑇� – mean time to recovery in days 
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4.3 Case Study for Accessibility Analysis 

The general area for Tampa Bay, the case study, is an area prone to hurricane 

strikes and storm surges. The Tampa Bay is a vast natural harbor and estuary which is 

linked to the Gulf of Mexico on the west central coast of Florida. The specific county for 

this case study is Pinellas County.  

4.3.1 Data Set 

Information for hospital facilities, census block groups, and Florida coastal hazards 

demarcations were obtained from Florida Geographic Data Library (FGDL). The NBI 

bridges shapefile was obtained from ESRI, while roadway shapefile and Tampa Bay 

Regional Planning Model (TBRPM), were retrieved from the Florida Standard Urban 

Transportation Model Structure (FSUTMS). The hospital shapefile contained attributes for 

hospital facility locations and capacities (number of beds) for the case study area. The 

census block groups also contained various demographic details for each block group 

division within the jurisdiction. The coastal hazards dataset contained cartographic 

representation of the coastal counties in the State of Florida that are vulnerable to coastal 

erosion and inundation from sea level rise or storm surge. The database file and its 

associated layers are utilized by coastal managers to comprehensively assess hurricane 

induced storm surge hazards along the coast of Florida. Figure 4.6 shows the area with the 

hospitals and damaged bridges. 
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Figure 4.6. Maps showing Pinellas County with the locations of hospitals and expected 
damaged bridges near to aging-dense zones. 

 

4.4 Results and Discussion 

The accessibility analysis for this study included the selection of 140 census block 

groups that were identified as aging-dense zones, with these zones serving as incident 

areas. It has been previously indicated in this chapter that 66 bridges critical to the mobility 

of the above-mentioned zones are at risk of closure during a Category 3 Hurricane. Also, 

15 designated hospital locations were identified, serving as facilities of interests for 

accessibility analysis. The scenarios adopted in this study assumes that the identified-at-

risk bridges are damaged during the storm, hence, remains closed after the hurricane event 

for repair activities which are envisaged to take lengthy periods. Furthermore, as normal 

activities resume, accessibility of seniors to primary healthcare, expected to be affected, is 

evaluated. The network analysis methodology used in this study is quite rigorous since 
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resilience is measured based on the senior accessibility to healthcare under normal road 

network functionality, compared with senior healthcare accessibility during closures of the 

identified bridges. 

In the network analysis, the TBRPM is utilized to initially capture FFT and CTT for 

the Pinellas County for the base model (without bridge closures). The network is then 

modified to capture the damaged bridges within the TBRPM environment and re-analyzed 

until a new equilibrium is reached hence adequately representing FFT and CTT during 

bridge closures. The closest facility analysis tool in network analyst (an extension in 

ArcGIS) is then used to obtain the minimum times for each aging-dense area to access 

healthcare prior to and after the hurricane event. Figure 4.7 depicts the effects of bridge 

closures on the travel times between the aging population zones and the hospitals. There 

was an observed increase from about 900 to 1100 minutes and from about 1200 to 2100 

minutes, for the FFT and CTT, respectively. This indicates travel time increases of about 

15% and 75% for FFT and CTT, respectively. Furthermore, an additional total travel 

distance of 52.85 miles was observed for FFT and CTT.  

The mean travel times after bridge closures increased from 6.6 to 7.76 minutes and 

from 8.43 to 15.1 minutes for FFT and CTT, respectively. Figure 4.7a represents changes 

in minimum travel time after bridge closures for each aging-dense zone. Figures 4.7b and 

4.7c are derived from equation 3, and account for functionality computed as the ratios of 

minimum travel times for each trip, prior to and after bridge closures. It is observed that 

while many age-dense zones did not record changes in FFT as observed in Figure 7b, 

Figure 4.7c indicates significant changes for CTT resulting from the effects of congestion 

on travel. This is because post-hazard recovery involves an increase in roadway demand 
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leading to significant impact of bridge closures on network travel time. Such conditions 

warrant the prioritization and rapidity of bridge restoration activities in order to ensure that 

the emergent health needs of the aging population are met.  Results shown in Figure 4.8 

indicate minimum travel times and routes to various hospitals based on FFT and CTT for 

both the base model (Figures 4.8a and 4.8b) and interrupted network (Figures 4.8c and 

4.8d). The color variations seen indicate the minimum travel times from the centroids to the 

nearest hospital. 
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Figure 4.7. Results indicating differences in FFT and CTT prior to and after bridge 
closures, as well as FFT and CTT based functionality measures. 

While FFT accessibility maps (Figures 8a and 8c) show some similarities, bridge 

closures are observed to significantly affect accessibility of the aging population to 

hospitals. This difference is further evident when comparing CTT accessibility maps 

(Figures 4.8b and 4.8d). These results support findings in Figure 4.7. Additionally, three 

aging-dense zones were observed as being without access to hospitals after bridge closures. 

These are seen on the South boundary of Pinellas County and are highlighted green in 

Figures 4.8c and 4.8d.  

 

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6Fu

nc
tio

na
lit

y 
M

ea
su

re
 (C

TT
)

Aging-Dense Zones

(c) 

90 



 

 
Figure 4.8. Minimum FFT and CTT to hospitals for each aging-dense location: a.), b.) base 
network and c.), d.) bridge closure-network 
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Resilience indexes for the bridges were based on the functionalities computed from 

FFT and CTT using equation 3, as well as the expected bridge recovery times after bridge 

damages. The damage states for the 66 identified bridges were considered as moderate, 

extensive, and complete levels; slightly damaged bridges were not taken into account in 

this study as those bridges are normally not expected to undergo total closures. In 

computing resilience index, it is expected that in most cases, moderately-damaged bridges 

will be restored before those bridges with extensive and finally, the restoration of 

completely-damaged bridges. Computations included the re-evaluation of the traffic 

assignment model for network functionality improvement after bridge restoration for each 

damage state. The resulting resilience index scaled from 0 to 1 is computed based on 

equation 4, with 1 representing a perfectly functional network and zero otherwise. It is 

expected that six days after all bridges are closed, moderately damaged bridges will be 

restored, and this results in functionality improvement from 0.87 to 0.94 considering FFT, 

and from 0.57 to 0.83 considering the CTT. Extensively-damage bridges are expected to 

open 30 days after the hurricane event, resulting in functionality increase from 0.94 to 0.96, 

and 0.83 to 0.85, respectively, considering FFT and CTT. All bridges are expected to be 

restored 29 days after extensively damaged bridges are opened. The resilience index for 

this study was computed as 0.94 and 0.81 for FFT and CTT respectively, implying 

significant loss in senior mobility hence the need for mitigation measures. 

4.4 Conclusions 

This chapter has presented an accessibility-based approach to healthcare for 

evaluating senior community resilience with a focus on bridge damages. The research 

approach adopted included the identification of bridges which are at high risk to damage as 
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a result of Category 3 Hurricane events by computing wind exposure probabilities at each 

bridge location, assigning damage states to bridges by using NBI attribute fields and 

historic data, and finally identifying local bridges subjected to high storm surge heights 

during hurricanes. The adopted approach was based on previous studies which identified 

bridge damages to areas of high-wind exposure probabilities. The essence of this study was 

to provide an approach for identifying at-risk bridges by utilizing available data sources on 

hurricane winds, storm surge heights, operational characteristics (from NBI) of previously 

damaged bridges due to hurricanes, and NBI characteristics of bridges presently located in 

coastal areas exposed to categorical hurricanes. Furthermore, the importance of the 

identified bridges to aging-dense zones was evaluated as well as the effects of bridge 

closures to aging population accessibility to hospitals.  

Results indicated that 66 bridges were of specific interest (using proximity analysis) 

to areas with a high percentage of aging population. Movable bridges were identified as 

being very vulnerable during hurricanes. Accessibility analysis was modeled based on 

closest facility analysis by using the identified 140 aging-dense zones and 15 hospitals as 

origins (incident locations) and destinations (facilities), respectively. Significant increases 

in minimum travel time to hospitals were observed for both free flow travel time (FFT) and 

congested travel times (CTT). This was more evident for CTT due to congested roadway 

conditions, yielding a resilience index of 0.81 compared to 0.94 from FFT. Aging 

population accessibility to hospitals is of utmost importance due to human frailties that 

come with age, and because some age dense zones were more affected than others in this 

study. The need for increased financial investment in maintaining and reinforcing both state 

and locally maintained bridges are requisite for efficient senior mobility. With the 
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population of those 65 years and above on the increase, this need is timely. Increase in 

roadway travel times, reduced functionalities, and decreased resilience communicated 

through this study highlights that senior members are affected by bridge closures. 

The authors recommend that further studies which entail the application of more 

precise recovery times for affected bridges are undertaken to improve the computation of a 

more rigid resilience index which will help to communicate the effects of bridge closures 

on community resilience. Various transportation agencies are also encouraged to develop 

and maintain a database to document hazard-induced bridge damages and post-disaster 

recovery activities (especially recovery times). This will contribute to identifying the extent 

of bridge damage, evaluate recovery efforts, and enhance mitigation measures and/or 

rapidity during post-hazard recovery.  
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