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Abstract 

 Roadway crashes claim more than 30,000 lives each year in the United States, and 

they continue to affect the lives of people adversely. This problem becomes even more 

challenging when aging populations are considered due to their vulnerability and fragility to 

crashes. This is especially a principal concern in Florida since the crash risk for the aging 

population is increasing day by day, proportional to the population growth of aging Floridians. 

This study investigates the spatial and temporal patterns of aging-involved crashes to identify 

aging related crash hotspots, using Geographical Information Systems (GIS)-based methods on a 

case study of ten urban counties in Florida. The counties were selected based on the high aging-

involved crash rates, as identified by the Safe Mobility for Life Coalition of Florida. Both 

different spatial and temporal methods were employed. Among the methods studied, SANET, a 

network distance-based kernel density estimation method, was identified as a very effective tool 

in providing an unbiased distribution of the crashes by calculating the actual distances between 

the crashes over the roadway network. GIS-based results were also supported with a binary 

logistic regression analysis to identify the significant factors affecting aging-involved crash 

occurrence when compared to other age group crashes. Results indicate that high risk locations 

for aging-involved crashes show different spatial and temporal patterns than those for other age 

groups. These pattern specific differences include the following: (a) Intersections have an 

adverse effect on the 65+ populations more than other adult age groups, and the locations of high 

crash risk intersections are different than those of other age groups, (b) Aging-involved 

population crashes occur during the mid-day rather than the peak hours, which is not a similar 

pattern for other adult age groups, especially for the working populations, and (c) Week days 

have more aging-involved crashes than the weekends contrary to the other age group crashes. 

xv 



Investigating these distinct patterns thoroughly can lead to better aging-focused transportation 

plans and policies, thereby reducing aging related crashes in Florida.  
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Chapter 1 Introduction 

1.1 Background and Motivation 

 Traffic crashes are one of the leading contributors to the social and economic costs for 

the society. According to the Federal Highway Administration (FHWA, 2015), roadway crashes 

in the United States (U.S.) are the leading cause of death. Despite substantial efforts towards 

implementing preventive solutions, crashes still remain a serious problem (Plug et al., 2011). 

This problem becomes even more challenging and complex when aging people (persons age 65 

and over) are considered since they are more vulnerable to traffic crashes than other adult age 

groups due to their cognitive, behavioral, and health limitations. 

As the population increases in the U.S., so does the number of individuals age 65 and 

older (U.S. Census Bureau, 2010). Decennial data between the years 2000 and 2010 indicate that 

the number of residents in this age group increased by 15.1 % over the ten-year period, while the 

overall population increased by 9.7 % nationwide (U.S. Census Bureau U.S. Census Bureau- 

May, 1995 revised on October, 2011). Currently, the aging population growth rate is at a 

moderate pace. However, this rate is expected to grow rapidly in the future. By 2030, the 65 and 

older (65+) population is projected to be more than 20 % of the total U.S. population, a 

substantial increase from 13 %  and 9.8% in 2010 and 1970, respectively. By 2050, the 

estimations show that the 65+ population will have nearly doubled, from 43.1 million to 83.7 

million (Jennifer et al., 2014). This increase in the 65+ population is mainly attributed to the 

aging of people who were born during the post-World War II era, between 1946 and 1964, and 

are generally referred to as the “baby boomers”. The first baby boomer turned 65 in 2011, 

indicating that the growth rate of 65+ population will significantly rise in the coming years. In 

2029, all of the baby boomers will be over age 65 and constitute more than 20% of the total U.S. 
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population (Sandra and Jennifer, 2014). Advancements in the field of medicine have also 

improved the survival rate, especially in the U.S. In 1972, life expectancy at age 65 was at 

approximately 15.2 additional years, whereas today, it reaches up to 19.1 additional years. Thus, 

the 65+ age group in the U.S. continue to live while other age groups turn 65 years of age 

(Jennifer et al., 2014). It is projected that by year 2056, the population of the 65+ age group will 

become larger than the population under 18 years (Sandra and Jennifer, 2014). This increased 

population will have a critical effect on U.S. roadways, especially on the number of crashes. At 

present, there are 34 million licensed drivers age 65 and older in the U.S., 16 % of the total 

number of licensed drivers. This percentage is projected to increase to 20% by the year 2025 

(Sandra and Jennifer, 2014). Hence, there is a need to focus more on aging-involved crashes so 

that planners and engineers can explore ways to mitigate future crashes and provide safety for 

aging road users.  

This issue is even more critical for States with high aging populations such as Florida. 

The aging population growth rate in Florida is higher than the national average, consisting of 

19% of the total State population (U.S. Census Bureau- May, 1995 revised on October, 2011). 

The percentage of population in the age group of 50 to 64, on the other hand, is 20% of the State 

population, indicating a significant increase in the 65+ population in the coming years. By 2030, 

the 65+ group population is estimated to be over 27%. Moreover, Florida is one state where 

nearly 20% of the drivers are over the age 65, and also the second largest state for total number 

of licensed 65+ drivers. Consequently, the number of aging road users and aging-related crashes 

on Florida roadways increases every year. Florida traffic crash statistics reflect an 11.3 % 

increase in aging-involved crashes from 2008 to 2012 (FDOT, 2015). Statistics also show an 

increase in the number of crash related fatalities. In 2008, 447 aging road users were killed in the 
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crashes, nearly 15 % of all fatalities. From 2007 to 2009, the traffic fatalities involving the aging 

population increased from 18.3% to 20.6% (Florida Department of Highway Safety and Motor 

Vehicles, 2013). 

According to the U.S. Census Bureau (2010) and the Safe Mobility for Life Coalition 

(SMLC) (2013), the number of 65+ people will almost double in Florida from 2010 to 2040 

(Florida Demographic Research, 2014). As the number of aging people become a greater share 

of the population, aging-involved crashes will also be more than present. Therefore, it is 

important for transportation agency officials to understand the spatial and temporal patterns of 

aging-involved traffic crashes, to aide with the implementation of more effective preventive 

measures. 

1.2 Research Objective 

 To study the high risk of death and injuries posed by the roadway crashes, Geographical 

Information Systems (GIS) has emerged as a vital tool, allowing agencies to better identify 

roadways associated with high crash risks while providing visual illustrations of crash clusters on 

maps. However, no studies focusing specifically on the spatial and temporal patterns of aging-

involved crashes have been undertaken. The objectives of this research were to:  

• Identify and study the locations of crashes that pose high crash risks for aging road users, 

• Identify the temporal patterns of the aging-involved crashes, 

• Analyze the spatial and temporal clusters of crash hotspots that possess high risks for 

aging road users, and 

• Conduct statistical analyses to determine the significant factors contributing to the 

occurrence of aging-involved crashes. 
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To achieve these objectives, GIS-based spatial, temporal, and spatio-temporal methods 

were applied with a focus on aging people. Following a review of existing literature, the GIS-

based comparative methodology was based on the following methods: (a) Spatial analysis with 

the Kernel Density Estimation (KDE), (b) Temporal analysis with the spider graphs, and (c) 

Spatio-temporal analysis with the Comap method. Roadway networks in ten urban counties and 

one rural county in Florida were examined to identify high crash risk locations containing crash 

clusters (hotspots). The counties were selected based on the high aging-related crashes with 

respect to the aging population, and designated as priority counties by the SMLC of Florida. A 

regression-based statistical analysis was conducted on the crash hotspots to identify significant 

factors relating to aging-involved crashes. These analyses can assist transportation officials with 

understanding the contributing factors surrounding crash occurrence in the 65+ age group, and 

focus deeper on aging driver behavior to pinpoint road characteristics that are problematic for 

aging road users. 

1.3 Report Overview 

This report consists of 5 chapters. Chapter 1 provides a brief introduction and discussion 

of the research objectives. Chapter 2 concentrates on the review of existing spatial, temporal and 

spatio-temporal GIS-based crash analyses, as well as, the statistical methods used to identify the 

significant contributing factors. Chapter 3 presents the proposed methodology in the context of 

aging-focused transportation operations, including the data collection, extraction, and preparation 

processes. Chapter 4 includes the application of spatial, temporal and spatio-temporal methods, 

and regression methods for the selected Florida counties. Results from the spatial, temporal and 

regression analyses are discussed in Chapter 5, followed by the conclusion, contributions, and 

future tasks discussed in Chapter 6. 
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Chapter 2 Literature Review 

Over the last two decades, the high risk for aging people associated with crashes has been 

a growing concern. This concern is especially prominent in Florida, where the population of 65+ 

increased 16% from 2000 to 2010, and expected to double by the year 2020 ((U.S. Census 

Bureau, 2010, SMLC, 2013). With this increasing 65+ population, statistics show that the crash 

rates for the 65+ age group, projected to 10,000 licensed drivers, increased by 30.8% from 2008 

to 2011 (Florida Department of Highway Safety and Motor Vehicles, 2013). These statistics 

highlight a crucial focus area, aging-involved crashes. Previous research recognized this need; 

however, most of these studies focused only on behavior-related problems, regression models 

that include age as a factor, and the effects of aging on the crash occurrence and injuries (Abdel-

Aty et al., 1998; Preusser, 1998; Hu and Baker, 2010; Centers for Disease Control and 

Prevention, 2007; National Center for Health Statistics (NCHS), 2007; Dissanayake and Lu, 

2002; Braitman et al., 2007; Boufous et al., 2008; Cook et al., 2000; McGwin and Brown, 1991; 

Williams and Shabanova, 2003; Alam and Spainhour, 2008; Abdel-Aty et al., 1999; Abdel-Aty 

and Radwan, 2000; Abdel-Aty et al., 1999). Consequently, there is a definite need for 

methodologies that focus on the spatial and temporal distribution of aging-involved crashes. 

Traffic crashes on the roadways exhibit distinct spatial and temporal patterns, and are 

said to form clusters in the geographical space and time (Black, 1991). An extensive knowledge 

and analysis of these patterns is therefore important for developing appropriate crash prevention 

strategies. According to McGuigan (1981), the relationship between traffic crashes and roadway 

attributes allows for the identification of locations prone to a higher number of crashes, or 

hotspots. These hotspots can be determined spatially, temporally and spatio-temporally using 

different methods. The first and foremost element in identifying crash hotspots using any method 
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is the designation of the crash point on a geographical space. Once crash points are plotted in the 

space, they can be analyzed for clustering and significance. The variables associated with each 

crash such as location, timing, traffic data, and speed limit can be used for interpreting traffic 

patterns. After hotspots are identified, some of the variables can also be included in statistical 

analyses to determine possible contributing factors for the crash clusters.  

Geographical Information System (GIS) is one tool employed to analyze crashes using 

crash information converted specifically for spatial mapping. For such a conversion, information 

regarding the number, time, and location of crashes are needed. With this information, crash data 

can be analyzed spatially, temporally and spatio-temporally, using GIS. These methods can 

pinpoint crash hotspot locations and the times when most crashes occur. Recently, a number of 

studies successfully implemented GIS techniques to identify clusters of various roadway 

incidents (Dai et al., 2010, Steenberghen et al., 2010, Plug et al., 2011, Larsen, 2010, Pulugurtha 

et al., 2007). However, studies that focused on identifying crash hotspots involving aging drivers 

were very limited. Hence, more research directed at analyzing aging-involved crashes, 

identifying high risk locations, and determining appropriate safety measures for reducing aging 

road user crashes is needed. The following sections present a review of several existing spatial, 

temporal, and spatio-temporal methodologies. 

2.1 Spatial Analysis 

 Any formal statistical technique that focuses on data based on spatial details, such 

as topological geometry or geographic properties, falls under spatial analysis methods. In other 

disciplines, in order to detect the geographic domains with high density (hotspots) spatially, 

studies have been conducted which implement Geographical Information Systems (GIS)-based 

methods. Examples include studies involving crime-related hotspots (Kuo et al., 2011, Nakaya 
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and Yano, 2010, Turnbull et al., 2000) and medical observations, mostly for cancer cell detection 

(Jarrahi et al., 2007, Kulldroff et al., 1997, Kulldroff et al., 2005). 

Similarly, GIS can also be used to analyze roadway crashes to identify high risk 

locations, hotspots and/or clusters. Crash analyses can be done in two different ways: 

• Locating the high crash risk locations, 

• Using crash information to arrive at a methodology for predicting future crashes. 

The central advantage in using GIS is that it can associate the high crash locations. GIS 

can provide the means to analyze crashes by either using buffering or cluster analyses (crash 

concentrations), or by spatial queries. Cluster analyses form clusters that are graphically 

recognizable and may reflect a circular, elliptical, or contour type shape depending on the 

analysis method used (Michael, 2006). In each case, clusters can be examined for statistical 

significance using the observed number of crashes within the cluster (Michael, 2006). These 

methods measure distances between the crash points and compare them to available random 

crash distributions.  

Point pattern analysis is the most popular approach for identifying hotspots. Analyses can 

be broadly divided into two categories (O’Sullivan and Unwin, 2002, Manepalli et al., 2011). 

The first category examines the first-order effects, i.e. measures the variation in the average 

crash value. Kernel Density Estimation (KDE), Nearest K-means, Quadrant count analysis and 

Neighbor Method (NNM) fall under this method. Other methodologies examine the second-order 

effects, i.e. spatial dependency of points. Spatial autocorrelation techniques such as Moran’s I, 

Getis-Ord G statistic examine the second-order effects. (Xie and Yan, 2008, O’Sullivan and 

Unwin, 2002). 
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A number of studies have concentrated on using spatial analysis methods. Previous 

studies have evaluated crash hotspots to determine possible roadway design deficiencies (Dai et 

al., 2010; Steenberghen et al., 2010; Plug et al., 2011; Larsen, 2010; Pulugurtha et al., 2007). 

Other studies have also been conducted to identify crash hotspots using GIS techniques to 

examine pedestrian-, truck-, young driver-, and weather-related crashes (Dai, 2012; Khan et al., 

2008; Huang et al., 2010; Siddiqui et al., 2011; Shalini and Geetam, 2013). 

The next section describes Kernel Density Estimation method. 

2.1.1 Kernel Density Estimation (KDE) 

There are a variety of spatial methods used to identify crash hotspots, including the 

Kernel Density Estimation (KDE), Getis-Ord (Gi*), K-means, nearest neighbor method, and 

point cluster method  (Larsen, 2010). This study focuses on the evaluation of the most popular 

approach for spatial analysis, Kernel Density Estimation (KDE). Due to its simplicity and ease of  

application, KDE has generally been the most popular approach to study the first-order effects of 

crashes. KDE is fundamentally a density estimation and uses a distance-based technique that 

analyzes a point dataset, and creates a density surface for each point (i.e., crash occurrence). For 

each individual point, a Kernel density surface is defined with the highest value at its location 

center. The density value decreases as it moves away from the center, and finally becomes zero 

after it reaches a pre-specified radius. Conceptually, each of these individual density surfaces are 

added to create a continuous smooth curved surface across the entire study area (Silverman, 

1986). Although there are a wide range of Kernel functions available, Silverman (1986) argued 

that the choice of Kernel function would not significantly affect the results. 

For the KDE-based spatial approach, distances between two crash locations can be 

calculated in two distinct ways: (a) Planar KDE, (b) Network KDE. Planar KDE uses Euclidian 
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distance measure while analyzing the traffic crashes (Plug et al., 2011; Asgary et al., 2010; 

Pulugurtha et al., 2007; Prasannakumar et al., 2011; Anderson, 2006; Anderson, 2009; Truong 

and Somenahalli, 2011; Pulugurtha et al., 2007; Flahaut et al., 2003; Shalini and Geetam, 2013). 

Shalini and Geetam (2013) also concentrated on pedestrian crashes using GIS techniques. Plug et 

al. (2011) studied spatial and temporal techniques on single vehicular crashes for identifying 

hotspots. The planar KDE approach calculates the crash density in a circular window moving 

across the study area, and the crashes inside the window area are weighted based on the 

Euclidean distances from the center where the density values are assigned. This produces a 

biased estimation based on confining the estimation of the Kernel density values in a planar 

scale. With the network KDE approach, on the other hand, crashes are weighed based on their 

network distances along the roadway, not by the Euclidean (planar) distance. That is, the 

network KDE approach assumes that the crashes occur on or alongside the roadways. This 

approach was applied on GIS-based roadway networks by Okabe et al. (1995, 2006, 2009) as an 

improvement to the planar KDE method, and also to overcome the biased estimation encountered 

when planar KDE method is used for roadway networks. For this purpose, Okabe et al. (2006) 

created a GIS-based application referred to as SANET. See Okabe et al. (2009) for a more 

detailed discussion on the SANET tool. Satoh and Okabe (2005) pinpointed the drawbacks of 

using planar methods in analyzing the points that took place on a roadway network (on a planar 

space), showing that the planar estimation produces a bias. Recently, several researchers 

employed this approach to calculate the kernel density distributions for crashes (Larsen, 2010; 

Xie and Yan, 2008). Other studies by Yamada and Thill (2004), Mohaymany et al. (2013), Loo 

et al. (2011) , Loo and Yao (2013), Yang et al. (2013), Dai et al. (2010), Timothee et al. (2010), 

Steenberghen (2010), Larsen (2010), Flahaut et al. (2003), Xie and Yan (2008), Borruso (2005), 
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and Borrus (2008) also employed network KDE approach in their research. Okabe et al. (2009) 

formulated three types of Kernel function: the ‘similar shape’, the ‘equal split’, and the ‘equal 

split continuous’ methods for the estimation along the networks. They also argued that the ‘equal 

split’ and ‘equal split continuous’ methods produce unbiased results unlike the ‘similar shape’ 

kernel function, which is an extension of the planar KDE. Larsen (2010) studied traffic crashes 

in the Philadelphia using the Nearest Neighbor, K-function, and KDE methods, and presented a 

comparison between planar KDE and network KDE methods that explained the biased 

estimation produced by planar KDE. Steenberghen et al. (2010) showed the difference between 

planar KDE and network KDE more clearly by examining crash hotspots identified by each 

method and explained the benefits of using network KDE. They employed a new network-based 

approach known as the moving segment approach, where the roads are not necessarily divided 

into equal segments. Comparisons between ED and RND were also presented when analyzing 

crash hotspots for an whole population by Mohaymany et al. (2013), Dai (2012), and Yamada 

and Thill (2007). These studies show the relatively better performance of the network KDE 

approach over the planar KDE approach while estimating the crash distributions accurately. 

2.1.1 Spatial Autocorrelation: Getis-Ord (Gi*) 

In spatial analysis, failure to look at the effects of the spatial scale may lead to serious 

errors (Anselin and Griffith, 1988, Getis and Ord, 1992). There are generally two ways of 

assessing spatial patterns within geographical space: (a) “global” measure, and (b) the “local” 

measure. Global statistics evaluate the entire dataset and report the presence, if any, of the spatial 

autocorrelation, displaying the overall pattern of the data in the study region. Moran’s I index 

and Getis-Ord General G statistic are two types of global measures that can be used within GIS. 

These global measures identify the statistically significant patterns of high risk (hot spots) or low 
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risk (cold spots) frequency locations. The Getis-Ord (Gi*) statistic is a spatial autocorrelation 

method used to identify statistically significant spatial clusters. Getis and Ord (1992, 1995) 

introduced a family of G statistics which measures the spatial association of crashes. Getis and 

Ord (1992) compared the Moran’s I statistic and General G statistics. They explained that G 

statistics and Moran’s I measures differ significantly, and concluded that G statistics provide a 

better understanding of the spatial data when used in conjunction with the Moran’s I. The local 

measure of the spatial association, on the other hand, quantifies the spatial autocorrelation at a 

relatively smaller scale to determine the high risk clusters. The Getis-Ord Gi statistic and local 

Moran’s I are the indicators of local measures used in the literature (Getis and Ord, 1992, 

Anselin, 1995).  

Several studies used spatial autocorrelation techniques to identify and analyze hotspots 

(Manepalli et al., 2011; Mohaymany et al., 2013; Flahaut et al., 2003; Khan et al., 2008; 

Erdogan, 2009; Deshpande et al., 2011; McCullagh, 2006; Black and Thomas, 1998; Kuo et al., 

2011). Flahaut et al. (2003) compared two different statistical techniques, local autocorrelation 

index and the KDE method to locate the black zones resulting from road crashes. From this 

study, Flahaut et al. (2003) argued that autocorrelation techniques can investigate the local 

spatial structure of roadway crashes better than KDE methods by allowing the length of the black 

zones to vary locally. Manepalli et al. (2011) also made a similar comparison between the KDE 

and Getis-Ord (Gi*). This study supported the findings of Flahaut et al. (2003). Fixed distance 

band, inverse distance band, and inverse square distances were used to determine the Gi* 

statistics. Results showed that inverse distance and inverse square distances identify hotspots 

more accurately (Manepalli et al., 2011). Khan et al. (2008) used the Getis-Ord (Gi*) method in 

order to correlate crash patterns with different weather conditions. Results showed a positive 
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spatial autocorrelation suggesting that weather was a contributor to the high number of crashes in 

the study area. Deshpande et al. (2011) also presented a comparison between planar KDE and 

spatial autocorrelation methods, and concluded that Kernel Density is more appropriate in crash 

analysis. The most thorough comparison study reviewed was conducted by Kuo et al. (2011) 

where a comparison of the planar KDE, Getis-Ord, and network KDE methods were presented. 

Crash and crime data were used in the study to identify the clusters for both data sets. According 

to this study, KDE showed the high risk locations more accurately than the Gi* which only 

shows a large area covered in clusters. Moreover, Gi* defined a point and/or an area where 

incidents were clustered together by high values only. Finally, Plug et al. (2011) mentioned that 

the drawback of Gi* was that it needed the aggregation of data rather than using the individual 

crashes. A review of the existing studies clearly express the better performance of the KDE 

methods. 

2.2 Temporal Analysis 

The majority of existing studies reviewed used spatial clustering to analyze traffic 

crashes. Few researchers focused on investigating the temporal patterns for analyzing the crash 

data sets, which are as critical as spatial patterns (Li et al., 2007; Plug et al., 2011; Corcoran et 

al., 2008; Asgary et al., 2010; Kuo et al., 2011). Temporal representation of data points is not 

only used for crashes and crime, but also in other fields such as fire safety. Studies like Corcoran 

et al. (2014) and Asgary et al. (2010) used spider graphs to represent fire incidents temporally. 

They showed that the fire incidents followed different spatial and temporal patterns. Results 

proved to be important for fire prevention planning and response management. 

Asgary et al. (2010) stated that there were four general forms of analysis in temporal 

analyses: the “panel”, “event-count”, “event-sequence”, and “event-history” methods. Panel 
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analysis shows the state of a sample of units at two or more points, while event-count analysis 

shows the number of different types of crashes in the selected interval. Event-sequence analysis 

shows the sequence of patterns that occur with a high frequency, and event-history analysis 

shows the timing of changes in a sequence. Temporal analyses concentrate on the units of time, 

such as hourly, daily, monthly, and yearly units of measure, to visualize the crash rates and crash 

frequencies (Plug et al., 2011; Li et al., 2007; Asgary et al., 2010). There are several ways of 

representing temporal relationships such as line graphs, bar graphs and spider plots. Several 

recent studies discuss the usefulness of spider graphs that illustrate the chronological nature of 

the temporal data, highlight the temporal hotspots, and provide a better visualization and 

understanding of crash variation over time (Plug et al., 2011; Li et al., 2007; Asgary et al., 2010). 

2.3 Spatio-temporal Analysis 

Roadway crashes require a keen understanding of both temporal and spatial components 

simultaneously. When two or more crashes occur at a close proximity, but differ in their time 

periods, they may not likely represent a significant cluster. Likewise, two crashes that occur in 

the same time period, but differ spatially are also not likely to represent a significant cluster. 

Hence, a good knowledge of both the spatial and temporal information is necessary for 

effectively representing the hotspots to develop better mitigation strategies. However, few 

researchers have concentrated on the spatio-temporal analysis for analyzing crash clusters (Wang 

and Abdel-Aty, 2006; Prasannakumar et al., 2011; Plug et al., 2011; Dai, 2012; Corcoran et al., 

2008; Asgary et al., 2010; Kuo et al., 2011). Two widely used methods in spatio-temporal 

analyses consist of the Comap method and SaTScan method. 
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2.3.1 The Comap Method 

Among the few available methods, the Comap method is one effective method in 

representing both spatial and spatio-temporal information simultaneously. The Comap method 

explores the crash data at an ordered time interval such as the hours of a day, days of a week, or 

months of a year. The method works by first sub-dividing the crash data according to time of 

occurrence based on a chosen interval, followed by a spatial analysis such as the Kernel Density 

Estimation (KDE). Results are presented in a sequential order to highlight the changes over time 

in order to identify the variation of spatial distribution of crashes over time. Plug et al. (2011) 

employed the Comap method for investigating single vehicle crash patterns. The study visually 

showed how crashes vary on space at different hours of a day. Several other studies (Asgary et 

al., 2010; Plug et al., 2012) also used the Comap method to successfully illustrate how the spatial 

distribution of crashes varies with time. Due to its simplicity of application, the Comap method 

is commonly preferred over other methods. 

2.3.2 The SaTScan Method 

The SaTScan method, developed by Kulldorff (1997), is another effective method in 

representing both spatial and spatio-temporal information together. SaTScan is reasonably 

sensitive and specific when compared to the other cluster detection methods (Song and 

Kulldroff, 2003, Dai, 2012). This method calculates a log-likelihood ratio statistic using a 

Poisson distribution in order to create the events needed for further analysis. Depending on the 

nature of the data, it allows for different probability distributions such as the Bernoulli, discrete 

Poisson, or space-time permutation model, and chooses either elliptical or circular shapes to 

conduct the spatial scan statistics for the base of the study area. Conversely, the time period is 

taken as its height, and different time periods can be selected for the analysis. The circular or 
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elliptical window moves in space and time across the study area. For each circle, a log-likelihood 

statistic is calculated, and the circles, which are statistically significant, are reported as clusters. 

Spatial randomness is accounted for by carrying out Monte Carlo simulations (Ribeiro et al., 

2012), a commonly used method to approximate the probability of outcomes by running multiple 

trial runs through simulations. The SaTScan method is widely practiced in the field of health 

science (Kulldorff et al., 2005, Molina et al., 2012, Ngui et al., 2013, Curtis et al., 2014, Roth et 

al., 2013, Zeng et al., 2004). Additionally, Cheng and Williams (2012) presented interesting 

results from the analysis of crime patterns with a combination of the SaTScan with visual inquiry 

tools such as space-time cubes, animations, and map matrices. The results were effectively 

displayed using space-time cylinders in a space-time cube.  

2.4 Statistical Regression Analysis of Crash Data  

While most of the studies concentrated on identifying the crash clusters or hotspots, 

several studies focused on identifying the significant factors (e.g. roadway and traffic 

characteristics) that influence the occurrence and severity of roadway crashes. A very 

comprehensive review on the evolution of these statistical methodologies was presented by 

Mannering and Bhat (2014). Since the crash counts are basically non-negative integers, Poisson 

regression approach was first adopted in order to determine the significant factors. However, due 

to the fact that the Poisson regression cannot handle overdispersed data, negative binomial and 

zero-inflated Poisson models became more popular (Mannering and Bhat, 2014). Recently, many 

statistical models have emerged enabling transportation researchers to extract more information 

from crash databases. However, the choice of statistical model remains a significant aspect in 

analyzing the factors that affect crashes. Lord and Mannering (2010) and Mannering and Bhat 

(2014) reviewed various statistical methodologies that can be used in identifying factors 
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associated with crash frequency data. Lao et al. (2014) used generalized nonlinear models for 

rear-end crash analysis to elaborate non-monotonic relationships between independent and 

dependent variables. They argue that the generalized nonlinear models provide a better 

understanding and explanation of contributing factors. The results also indicated a non-

monotonic relationship between the crash frequency and the percentage of trucks in the traffic 

stream. Abdel-Aty and Keller (2005) used ordered probit modeling and tree-based regression 

techniques to explore the crash severity levels at signalized intersections. They adopted the 

ordered probit model to illustrate the naturally ordered injury levels, and the tree-based 

regression model to explore the significant factors that affect crashes. Results found a high 

prediction rate for injury levels using a combination of crash information and intersection 

characteristics.  

Abdel-Aty et al. (1998) used log linear models to assess the effect of driver age on traffic 

crashes. The results found a specific relationship between the driver age, Average Daily Traffic 

(ADT) volume, speed, alcohol involvement, and roadway characteristics. Similarly, Lee and 

Abdel-Aty (2005) used log-linear models to identify the factors correlated with high pedestrian 

crashes. An ordered probit model was also employed to estimate the likelihood of pedestrian 

injury severity in pedestrian-involved crashes. Findings point to a correlation between middle-

age male drivers and pedestrians, and increased pedestrian crashes, compared to other age group 

drivers. Results also found that adverse weather and lighting conditions had an effect on 

pedestrian injury severity. Abdel-Aty and Radwan (2000) used a negative Binomial model to 

study the factors affecting crashes. The study determined that Annual Average Daily Traffic 

(AADT), degree of horizontal curvature, median width, lane curvature, and section length had 

significant influence on the frequency of crash occurrence. Wang and Abdel-Aty (2006) 
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performed temporal and spatial analyses on rear-end crashes particularly at intersections. They 

used the negative binomial link function to model rear-end crashes in order to account for 

temporal or spatial autocorrelation. A model was also developed to identify the relationship 

between the rear-end crashes, intersection geometric features, traffic operational features, and 

traffic characteristics. Their results revealed that high volume intersections, with a larger number 

of phases per cycle and right and left turn lanes, had a direct influence on rear-end crashes in 

high population areas. Yang et al. (2015) focused on modeling the crash risk of highway work 

zones by developing a model based on the logistic regression. They developed a model to 

explore the relationship between the contributing factors and crash risk in work zones. Findings 

revealed that work zone crash risk is significantly influenced by traffic volume, work zone length 

and lane closures. 

While there are many previous statistical analysis studies available in the literature, few 

studies focused on aging-involved crashes (Oxley et al., 1997; Abdel-Aty et al., 1988; McGwin 

and Brown, 1999). Oxley et al. (1997) studied judgment differences between young and old adult 

pedestrians, whereas Abdel-Aty (1988) and McGwin and Brown (1999) discussed the effect of 

driver age and characteristics on the occurrence of crashes.  

2.5 A Review of the Practice 

Older drivers experience deterioration in physical, perceptual and cognitive skills; 

therefore, many agencies have developed strategic plans to accommodate aging road users. 

National Cooperative Highway Research Program (NCHRP, 2005), one of the major areas of the 

AASHTO Strategic Highway Safety Plan, addressed this issue, performed extensive literature 

review and surveys, and provided implementation strategies to reduce the number of crashes 

involving aging populations. Some of the studies include several measures for implementation: 
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(a) providing advance warning signs, (b) increasing the size and letter height of roadway signs, 

(c) providing all-red clearance intervals at signalized intersections, (d) improving roadway 

delineation, (e) reducing the intersection skew angle, and (f) improving lighting at intersections. 

U.S. Department of Transportation provides design guidelines for the aging population, and 

included all roadway segments, particularly at intersections, where aging population crashes are 

more frequent. Some State transportation agencies consider the population group of age 45 and 

over as elderly, and have implemented license renewal rules for drivers age 45+. Florida 

Department of Transportation (FDOT) implemented a program, the Safe Mobility for Life 

Coalition (SMLC), in 2004 to improve safety, access and mobility of Florida’s aging population, 

and to identify transportation safety problems for the aging population (SMLC, 2013). Many 

interdisciplinary agencies have joined this program to create awareness among the aging 

population. SMLC program also conducts research to identify and develop plans to reduce aging-

related issues. Several measures and strategies have been implemented to reduce aging-involved 

crashes; however, the benefits of these plans have not been fully utilized. Thus, this area of 

practice and research is still worthy of investigation. 

2.6 Summary 

The review of existing literature reveals a gap in terms of identifying crash hotspots with 

a specific focus on the aging population. As a result, there is definitely a need for studies that 

focus on aging-involved crashes to identify high risk locations. Additional research in this area 

can facilitate the development of appropriate safety measures targeted at reducing the number of 

aging-related crashes and associated risk of injury. The next section presents the methodology 

used in the current study. 
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Chapter 3 Methodology 

The focus of this research was to develop a GIS-based spatial and temporal evaluation 

methodology for aging-involved roadway crashes. Unlike previous approaches found in  

literature, the current methodology, illustrated in Figure 3.1, concentrates specifically on crashes 

involving aging population groups to systematically determine the most hazardous locations for 

crashes. Hazardous location analysis refers to the identification of aging-involved crash hot spots 

and clusters on a given roadway network. Different spatial, temporal and spatio-temporal 

methods were considered to analyze the crash data, and identify the high crash risk locations 

using ArcGIS 10 mapping software. Statistical analyses were conducted using MATLAB 2014 

and Minitab 17. Section 3.1 describes the areas analyzed in this study. 

 

 
Figure 3.1 Research Methodology 

 

Literature Review
• Review of existing studies related to aging-involved crashes. 
• Review of previous studies using GIS for crash analyses.

Data Collection and Extraction 
• Crash and roadway network data are collected for the time period between 2008 and 
2012.

• Crash data is extracted from the shape files and mapped on to the GIS. 

Primary Data Analyses
• High crash risk locations for aging-involved crashes are identified via GIS-based 

spatial, temporal and spatio-temporal methods.

Secondary Analysis
• Statistical analysis is carried out based on regressiont techniques in order to identify the 
significant factors affecting the aging-involved crashes at the hotspots.

Final Report
• Research findings for the selected counties and hotspots are reported.
• Several planning and policy recommendations are provided in order to obtain better 
improvement or prevention measures.
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3.1 Study Areas 

Aging-involved crashes in Florida were examined for ten urban counties, Alachua, Bay, 

Broward, Duval, Escambia, Hillsborough, Leon, Miami-Dade, Monroe, and Pinellas, and one 

rural county, Walton County. The counties were selected based on the high number of 65+ age 

group crashes with respect to the age group population. Moreover, these counties were identified 

as priority counties by the Safe Mobility for Life Coalition Program (SMLC, 2013). 

Concentrated analysis efforts were placed on six of the eleven study counties, and 

included Broward, Escambia, Hillsborough, Leon, Miami-Dade and Pinellas County. Graphical 

analyses on the remaining five counties, Alachua, Bay, Duval, Monroe, and Walton, are 

presented in Appendix A through E. Figure 3.2 illustrates the 65+ population demographics in 

terms of percentages with respect to the total population in each of the selected six counties (U.S. 

Census, 2010). The 65+ population density is clearly recognizable in each county map, allowing 

for targeted geographical area analyses. 

3.2 Data Collection and Extraction 

Roadway network and crash data were obtained from the FDOT Safety Office in the 

format of GIS shape files with associated databases, and a query tool with crash data separated 

by age groups, 65+, 50-64, and less than 50 years of age for a study period of five years (2008-

2012). Traffic flow information was obtained from the data collected at the Telemetered Traffic 

Monitoring Sites (TTMS) locations operated by the FDOT. After the crash hotspots were 

identified, traffic flow information, using the date and time attributed to the crashes within each 

hotspot, was extracted from the relevant traffic stations and aggregated with the crash data. 

 

20 



 

            (a)            (b)           (c) 

 

           (d)                                         (e)                         (f) 

Figure 3.2 Population Demographics of +65 populations 
 

Figures 3.3 through 3.8 illustrate the total number of crash occurrences in each of the 

selected six counties from 2008-2012, for age groups 50+, 65+, and All ages. Broward (Figure 

3.3), Escambia (Figure 3.4), and Pinellas County (Figure 3.8) show increases in aging-involved 
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crashes from 2008 to 2010, followed by slight decreases in 2011, and increasing again in 2012. 

Alternatively, Hillsborough, and Miami-Dade counties (Figures 3.5 and 3.7) experienced annual 

increases in aging-involved crashes over the full five year study period.  Aging-involved crash 

occurrence remained fairly consistent in Leon County (Figure 3.6) among each study year, with 

only slight variations. Crashes for age groups 50+ and 65+ also demonstrate similar patterns. 

This observation is significant since aging of baby boomers are expected to produce a 79% 

increase in 65+ population over the next 20 years (Koffman et al., 2010). Consequently, crash 

risks associated with the aging population is expected to increase accordingly.  

 

 
Figure 3.3 Yearly Crash Variations: Broward County 

 

Figure 3.4 Yearly Crash Variations: Escambia County 
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Figure 3.5 Yearly Crash Variations: Hillsborough County 

 

Figure 3.6 Yearly Crash Variations: Leon County 

 

Figure 3.7 Yearly Crash Variations: Miami-Dade County 
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Figure 3.8 Yearly Crash Variations: Pinellas County 
 

3.3 Analytical GIS-based Approach 

For the GIS-based approach, spatial, temporal, and spatio-temporal methods were applied 

first to reveal crash patterns, high risk locations, and time periods of the crash clusters for the six 

counties of Broward, Escambia, Hillsborough, Leon, Miami-Dade and Pinellas. Geo-spatial 

aging-involved crash density maps were first created to provide visual illustrations of the 

intensity clusters of crashes involving aging populations. Three Kernel density spatial analysis 

methods were employed within the ArcGIS software, based on the following approaches: (a) 

planar KDE, (b) network KDE, and (c) Getis-ord Gi*. Results from these spatial analyses were 

compared to identify the advantages and disadvantages of each individual method. 

The second step included the use of spider graphs to obtain the temporal distribution of 

the aging-involved crashes. Temporal units of hours, days, and months were examined to reveal 

the trends in the crash data, and to display the number of crashes and crash clusters in a selected 

time interval. 

The third step involved the examination of the relationship between the spatial and 

temporal distributions of aging-involved crashes using a spatio-temporal technique called the 
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Comap method. For each spatial distribution of crashes, the Comap method determines the 

temporal pattern in the crashes by examining the effect of different time periods on the spatial 

data. Spatio-temporal maps were created for different time periods of the day. 

Figure 3.9 outlines the basic structure of the spatial and temporal GIS methodology used 

in this research. Based on the evaluation of these techniques, several important conclusions were 

reached with regards to the spatial and temporal patterns of aging-involved crashes. The case 

study application results are discussed in Chapter 4. 

 

Figure 3.9 Basic Structure for the GIS-based Methodology 
 

3.4 Spatial Analysis 

3.4.1 Planar Kernel Density Estimation (KDE) 

Planar Kernel Density Estimation (KDE) is a non-parametric density estimation where 

there are no fixed structures, and the analysis depends on all of the data points, contrary to 

parametric estimation which has a fixed functional structure. Unlike spatial auto-correlation 

which uses the aggregation of data, planar KDE uses disaggregated data by treating individual 
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events as centers to create mole hills. Planar KDE can be useful in identifying the density of high 

crash occurrence locations, or hotspots. As described in Chapter 2, the planar KDE method first 

takes an individual point and creates a density surface which peaks at the surface center. The 

surface value tends to become smaller as it moves away from the center point, thus creating mole 

hills surrounding each crash point. Once a surface is created for each individual crash point, a 

continuous density surface is created by combining the mole hills to develop a heaping surface 

across the entire study area. Crash events are weighted based on their distance from the Kernel 

center using the Euclidean distance, and a density value is assigned to the center point.  The 

density estimator function which is used in the analysis is shown in Equation (1) as follows: 

 

𝑓𝑓(𝑥𝑥) =  1
𝑛𝑛

 ∑ 𝐾𝐾 �𝑥𝑥−𝑥𝑥(𝑖𝑖)
ℎ

�𝑛𝑛
𝑖𝑖=1                                                                                               (3.1) 

where 

𝑓𝑓(x): density estimator, 

h: chosen bandwidth, 

n: number of observation points, 

K: Kernel function, 

x…x(i): observation points. 

 

In this equation, to ensure that f(x) integrates to 1 with a 

peak at zero. There are various choices in Kernel functions ranging from Gaussian, Quartic, 

Conic, Uniform, Epanechnikov, and Negative Exponential (O’Sullivan and Unwin, 2002; 

Mohaymany et al., 2013). Silverman (1986) argues that the choice of Kernel function will not 

significantly affect the results. This study employs the quadratic Kernel function (Silverman, 

1986) incorporated into the ArcGIS 10 software. It should be noted that when selecting the 

bandwidths, smaller bandwidths are more likely to produce inadequate smoothing by just simply 

�𝐾𝐾(𝑡𝑡)𝑑𝑑𝑡𝑡 = 1 
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highlighting the individual points. Hence, bandwidths are generally selected based on trial and 

error for the planar KDE method (Plug et al., 2011, Pulugurtha et al., 2007). 

3.4.2 Network Kernel Density Estimation (KDE) 

Contrary to planar KDE, Network Kernel Density Estimation (KDE), locates the crash 

hotspots (high risk locations where the crash densities are higher) on a network. The basic 

principle of network KDE is the same, except that it works on the roadway networks rather than 

a planar space. This method was first developed by Okabe et al. (2006) and applied successfully 

by several researchers such as Okabe and Sugihara (2011). The network KDE method attempts 

to estimate a nonparametric estimation when the only known information is the location of 

points. Let N be a roadway network with V (v1, v2, v3, …. vn) nodes on the network and L (l1, l2, 

l3, …. ln) roadway links on that network connecting the nodes. A sub-network Lq is created such 

that the shortest-path distance between q and any point on Lq is less than or equal to h, where q is 

an arbitrary point connected on any link L, and h is the chosen bandwidth. For a given point q 

and some arbitrary point p on any link L, the function Kq (p) is defined as follows: 

�𝐾𝐾𝑞𝑞 (𝑝𝑝) 𝑑𝑑𝑞𝑞 = 1 �
≥ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑞𝑞 𝜖𝜖 𝐿𝐿𝑞𝑞

= 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑞𝑞 𝜖𝜖 𝐿𝐿 �/𝐿𝐿𝑞𝑞
� 

Kq (p)                                      ,                                                                                       (3.2) 

                                                                                    

𝐿𝐿�𝐿𝐿�where    , the union of all links, p ϵ Lq is the integration of Kq (p) dp along the line 

segment of Lq. Here, Kq (p) is the network Kernel Density function value at q, with q as the 

kernel center. For the given sample points p1, p2……, pn on    , a function K (p) is given as 

follows: 

 

𝐾𝐾 (𝑝𝑝) =  1
𝑛𝑛
∑ 𝐾𝐾𝑝𝑝𝑖𝑖 (𝑝𝑝)𝑛𝑛
𝑖𝑖=1                                                                            (3.3) 
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where K (p) is the network kernel density estimator for f (p) at p. This creates a kernel 

function for all of the individual points on the network. However, this type of calculation 

changes if the point has more than two degrees, i.e., if it comes across as a node where it has to 

create a function on two roadway links. In such situations, Okabe et al. (2006) proposed two 

methods: (a) ‘Equal- split discontinuous kernel density function’, and (b) ‘Equal-split continuous 

kernel density function’. A key disadvantage of the latter method is an increase in computational 

time over the former method. Therefore, the first method, the Equal- split discontinuous kernel 

density function is applied in this study. Two possible cases arise when using this method: 

1. The kernel center q does not coincide with a node in V. 

2. The kernel center q coincides with a node in V. 

In the first case, a buffer network of q with a width of h is constructed with the shortest 

path s from q to the boundary points of the buffer network bi. If the boundary distance 0 ≤ ds (q, 

p) ≤ ds (q, vi1) it creates the function as Kq =K (ds (q, p)) but when it reaches a node vi1, it splits 

the link which comes from the center q into ni1 – 1, where ni1 is the degree of node vi1. Next, it 

distributes the value to every link that is attached to node vi1. This process continues until it 

reaches the boundary bi. The function Kq (p) is defined as follows: 

�
𝐾𝐾 (𝑑𝑑𝑠𝑠(𝑞𝑞, 𝑝𝑝))

(𝑛𝑛𝑖𝑖1 − 1) ((𝑛𝑛𝑖𝑖2 − 1) … . ((𝑛𝑛𝑖𝑖𝑖𝑖−1 − 1)
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑠𝑠 (𝑞𝑞, (𝑣𝑣𝑖𝑖𝑖𝑖 − 1) ≤ 𝑑𝑑𝑠𝑠(𝑞𝑞,𝑝𝑝) <  𝑑𝑑𝑠𝑠(𝑞𝑞, (𝑣𝑣𝑖𝑖𝑖𝑖),

𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑠𝑠(𝑞𝑞, 𝑝𝑝) ≥ ℎ
� 

Kq (p) =                                                                                                                           (3.4) 

 

where k = 1…., m, vi0 = q and vim = bi.  

 

In the second case, the value of function Kq (vi1) is divided by ni1 and assigned to the 

roadway links. The function in this case is defined as follows: 
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�
2𝑘𝑘 (𝑑𝑑𝑠𝑠(𝑞𝑞,𝑝𝑝))

𝑛𝑛𝑖𝑖1 (𝑛𝑛𝑖𝑖2−1) … . (𝑛𝑛𝑖𝑖𝑖𝑖−1 − 1)
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑠𝑠(𝑞𝑞, 𝑣𝑣𝑖𝑖𝑖𝑖−1) ≤  𝑑𝑑𝑠𝑠(𝑞𝑞,𝑝𝑝) <  𝑑𝑑𝑠𝑠(𝑞𝑞, 𝑣𝑣𝑖𝑖𝑖𝑖),

0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑠𝑠(𝑞𝑞,𝑝𝑝) ≥ ℎ.
� 

Kq (p) =                                                                                                                           (3.5) 

 

where k = 2,….., m.  

 

The computation of the equal-split discontinuous method is used when there are more 

than two paths available, and is critical when the length is less than h from the center q. For 

example, when the paths overlap on the network, N is carried out in three steps. In the first step, 

the method modifies the given network by creating dummy nodes for every link nearest to the 

nodes that have more than two degrees such that these dummy nodes further divide the existing 

links to manage the multiple values at every node with a degree more than two. In the second 

step, it computes the split ratio at every node with the length of the bandwidth h starting from the 

kernel center q. Third step sums up all the densities obtained from the previous steps with respect 

to all kernel centers. As the choice of bandwidth effects the density estimation, studies suggest 

using a 100-300 meter bandwidth (Okabe and Sugihara, 2011), which can be taken as a rule of 

thumb when applying the methodology on the urban areas. A 250-meter bandwidth was used in 

the current study for the network Kernel estimation analysis, and was determined based on trial 

and error. 

3.4.3 Spatial Autocorrelation (Gi*) 

As mentioned in Chapter 2, spatial autocorrelation works based on the first law of 

geography, that “everything is related to everything else, but near things are more related than 

distant things” (Tobler, 1970). Moran’s I, Getis-Ord G, Geary’s C and Anselin Moran’s I 

statistics belong to this family. All of these statistics require attribute values and the aggregation 
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of data. Since we are working on the crash data points, we only have the physical location of the 

crash data point without any attribute values associated to it. To overcome this and identify the 

clusters based on those points, the “Optimized Hot Spot Analysis” option, available in ArcGIS 

10 was used. The hot spot analysis uses the Getis-Ord Gi* analysis, developed by Getis and Ord 

(1992). This statistic can be used to evaluate spatial association of a variable within a specified 

distance of a single point (Getis and Ord, 1992). Getis-Ord Gi* is a second order statistic which 

examines the pattern locally. This is important if the process is spatially nonstationary. The G 

statistic measures the degree of association that results from the concentration of weighted 

points, which are included within a distance d (Getis and Ord, 1992). The Gi (d) statistic is 

calculated based on the following formula: 

 

𝐺𝐺𝑖𝑖(𝑑𝑑) =  
∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑑𝑑)𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝑗𝑗 𝑛𝑛𝑓𝑓𝑡𝑡 𝑒𝑒𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑓𝑓 𝑖𝑖,                                              (3.6) 

where;  

wij is the spatial weigh matrix with 1 for all the links within the distance d for given i, and 0 for 

all others.  

x = the weight associated for all links i, 

d = distance from the original weighted point. 

 

 This method identifies the statistically significant clusters of high values and low values 

based on the Z-scores and p-values, which determine whether or not to reject the null hypothesis. 

Complete spatial randomness defines the null hypothesis for the pattern toolset by either the 

features themselves or the values associated with the features. The desired result of this analysis 

is to reject the null hypothesis, which indicates that the features exhibit statistically significant 

clusters (High or Low), rather than a random pattern. If the given point i is among the high value 
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xjs,, then Gi (d) is high with a large positive Z-score. This indicates a cluster of high attributes. If 

the given point i has a low value xjs,, then Gi (d) is low with a large negative Z-score, which 

indicates a cluster of low attribute values. Therefore, the larger the absolute value Z-score, the 

higher the significance. The Gi* is given as follows: 

 

𝐺𝐺𝑖𝑖∗ =  
∑ 𝑤𝑤𝑖𝑖,𝑖𝑖 
𝑛𝑛
𝑖𝑖=1  𝑥𝑥𝑖𝑖− 𝑋𝑋�  ∑ 𝑤𝑤𝑖𝑖,𝑖𝑖 

𝑛𝑛
𝑖𝑖=1

𝑆𝑆 
��𝑛𝑛 ∑ 𝑤𝑤𝑖𝑖,𝑖𝑖

2𝑛𝑛
𝑖𝑖=1 − �∑ 𝑤𝑤𝑖𝑖,𝑖𝑖

𝑛𝑛
𝑖𝑖=1 �

2
�

𝑛𝑛−1

                                                         (3.7) 

where;  

Gi* is the Getis-Ord Z-score value at site i,  

xj is the attribute value for feature j,  

wi,j is the spatial weight between feature i and j,  

n is the total number of features, 

𝑋𝑋� is the average of crash frequency, and  

S is the standard deviation of xj. 

 

𝑋𝑋� and S can be calculated using the following equations: 

 

𝑋𝑋� =  
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                        (3.8) 

 

𝑆𝑆 =  �
∑ 𝑥𝑥𝑖𝑖

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 −  (𝑋𝑋�)2                                                       (3.9) 

 

Since no attribute values are defined, the optimization method aggregates the incident 

points, thus creating an attribute value to determine the statistic by utilizing one of three 

methods: “incident count with fishnet polygons”, “incident count with aggregation polygons”, or 

“snap-to nearby incidents” to obtain weighted points. The large dataset used in the current study 

31 



required the last method, snap-to nearby incidents, to successfully aggregate the data. Therefore, 

each hotspot analysis in this study was analyzed using the Getis-Ord statistic. 

3.4.4 Summary  

Roadway crashes events are constrained to networks. In planar spatial statistics, we 

assume that the events occur on a continuous plane and the distance between these events are 

measured by Euclidean distance. For convenience, planar spatial methods are often applied to 

network events. However, these methods may lead to potential false conclusions because the 

distance between the events used in the calculations is the Euclidean distance. In reality, this 

result is not typically the case, since the events occur on a network indicated by line segments. 

Satoh and Okabe (2009) in their research proved that this estimation produces bias. This bias can 

be compromised by the use of network based spatial analysis, where the events are mapped onto 

a network, and the distance between the events will be the shortest path. In another study, Maki 

and Okabe (2005) state that both the Euclidean and shortest path measures the same, however, 

this holds true only if the measurement is less than 400 meters (Maki and Okabe, 2005). Network 

based Kernel Density Estimation method was used in the current study. 

3.5 Temporal Analysis 

Temporal analysis provides more understanding, can assist in visualizing the change in 

aging-involved crashes over time (Plug et al., 2011), and also reveal the temporal trends involved 

in aging-involved crashes. Temporal units of hours, weeks and months were examined to reveal 

these trends in the spatial data. There are several ways of representing this temporal relationship, 

such as line graphs, bar graphs and spider plots. Several recent studies discuss the usefulness of 

spider graphs. Spider graphs were used in the current study to locate high crash locations 
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(hotspots) based on the selected time periods for each county. Event count analysis was also used 

to display the number of crash events in the selected time interval. 

3.6 Spatio-temporal Analysis 

Roadway crashes require a keen understanding of both temporal and spatial components 

simultaneously. When two or more crashes occur at a close proximity, but differ in their time 

periods, they may not likely represent a significant cluster. Likewise, two crashes that occur in 

the same time period, but differ spatially, are also not likely to represent a significant cluster. 

Therefore, a good working knowledge of both the spatial and temporal information is necessary 

for effectively representing the hotspots to develop better mitigation strategies. 

3.6.1 The Comap Method 

Comaps, also known as co-plots, can be used to explore the relationship between spatial 

and temporal data via the Comap method. This method allows the effect of the time period 

change on the crash hotspots for a given set of spatial data to be examined. In the current study, 

hourly temporal units were used for creating the Comaps for different hours of the day to observe 

the effect of the hourly time change on hotspots. Two conditions must be met to conduct this 

type of spatio-temporal analysis. First, the range of each chosen time period must overlap with 

the subsequent periods. Second, the number of crashes in each time period must be 

approximately equal. The two conditions are the only limitations of the Comap technique 

(Corcoran et al., 2007), and are necessary to represent the distribution of crashes spatially over 

time (Corcoran et al., 2007). Therefore, the analysis was performed by first separating the hourly 

crash data for chosen counties, and arranging them in a chronological order according to the 

chosen class. Class boundaries should be chosen in such a way that, each class should have 

approximately equal number of events. Once the data was arranged in the chronological order, 
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these subsets were then analyzed using the planar KDE method to identify the spatial and 

temporal variation in the aging-involved crashes. 

3.7 Regression Analysis 

Three regression analyses were performed to determine the significant factors influencing 

crashes in the 65+ age group compared with other adult age groups. Figure 3.10 shows the 

structure of the regression analyses used to identify the factors in this study. 

Regression analysis explains the effect of independent variables on the dependent 

variable. In this study, the effect of independent variables such as traffic characteristics, roadway 

characteristics, and weather conditions on the occurrence of crashes were explored for both the 

65+ and 65- age groups. In the analyses, the goal was to identify how the independent variables 

affect the probability of having an aging-involved crash versus a crash involving people under 

the age 65. Therefore, the dependent variable was coded as 1, for a 65+ crash, and 0, if otherwise 

(65-). Since the dependent variable and several other independent variables are binary, nonlinear 

logistic regression models such as Logit or Probit were appropriate to use. 

 

 

 

 

 

 

 

 

 
Figure 3.10 Regression Analysis Structure 
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These methods are different from linear regression, and can be solved explicitly using a formula. 

They also iterate several times to improve the fit of the model. Once the improvement from one 

step to the next is relatively small, the algorithm stops.  

In this study, logistic regression was used. Developed by Cox (1958), logistic regression 

is widely used to identify the effect of traffic characteristics (Amemiya, 1985). Several factors 

can be used for such a study including: (a) traffic characteristics, such as the AADT and speed, 

(b) roadway characteristics, such as lane width, median width, shoulder width, and number of 

lanes, and (c) population characteristics. The formulation of the logit model for a binary 

dependent variable with multiple regressors is as follows: 

 

Pr(𝑌𝑌 = 1| 𝑋𝑋1,𝑋𝑋2 … . .𝑋𝑋𝑛𝑛) = 𝐹𝐹 (𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛 ) 

=  1
1+ 𝑒𝑒−(𝛽𝛽0+ 𝛽𝛽1 𝑋𝑋1+𝛽𝛽2 𝑋𝑋2+⋯𝛽𝛽𝑛𝑛 𝑋𝑋𝑛𝑛)                                                       (3.10) 

 

 

where F is the cumulative standard logistic distribution function. 

 

Here, Y is the response variable, and takes a value of 1, for a 65+ crash, and 0, if 

otherwise. The regressors make no assumption about the distribution of the independent 

variables. The coefficients can be estimated by maximum likelihood. The maximum likelihood 

estimator for unknown regressor coefficients maximizes the probability of drawing the data 

which is actually observed. The hypothesis testing for the estimated values is conducted using 

the t- statistics and p- values. The measures of fit for the logistic model is conducted through 

pseudo-R2, and uses the maximum likelihood function. It measures the quality of fit of a model 
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by comparing the maximized likelihood function with all of the regressors to the value of 

likelihood with none.  

Three different regression approaches were pursued in this study. In the first approach, 

once the hotspots were identified, the crashes that happened inside the hotspots were separated 

from the whole data in the form of two age groups: above 65 (65+) and below 65 (65-). A 5 mile 

buffer zone was created surrounding the hotspot to identify the population age living in the zone 

using Census population figures (U.S. Census, 2010). Along with the population information, the 

following independent factors were also evaluated: AADT and speed, and roadway features such 

as lane width, median width, and shoulder width. These factors were used in the first regression 

analysis to observe the effect of the factors on aging-involved crashes compared to other adult 

age groups. For the second regression analysis, all intersections (161) inside the hotspots were 

selected, and the same approach was applied on these intersections, where intersection crashes 

were separated from the hotspots to determine the significant factors effecting intersection 

crashes only. In the third regression analysis, instead of using the specified AADT, actual hourly 

flow data, extracted from the TTMS locations by the FDOT, was used. The the case study 

application results are discussed in Chapter 4. 
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Chapter 4 Case Study Application Results 

In this chapter, we present a case study application on the Broward, Escambia, 

Hillsborough, Leon, Miami-Dade and Pinellas counties of Florida where we aim to identify the 

spatial, temporal and spatio-temporal distributions of aging-involved crashes. This application 

will also enable us to identify those high risk locations both spatially and temporally in terms of 

visual illustrations. Six primary counties of interest, Broward, Escambia, Hillsborough, Leon, 

Miami-Dade and Pinellas County, with an aging population percentage of 14%, 14%, 12%, 9%, 

14%, 21% (U.S. Census, 2010) respectively, are studied in this section. These counties are 

documented to have a high number of documented crash events involving aging persons. They 

also include the following major cities in the State of Florida: Fort Lauderdale, Pensacola, 

Tampa, Tallahassee, Miami and St. Petersburg, respectively. Figures 3.2 through 3.7 compare 

the number of crash occurrences between the years 2008-2012 within each county for adult age 

groups. Table 4.1, on the other hand, presents the aging-involved (65+) crash characteristics 

within the study period (2008-2012) for the six counties selected. Table 4.1 shows that the 

majority of aging crashes occurred during the daylight hours (under clear weather conditions and 

good roadway conditions) in all the counties. We can also see that more than 50% of the aging 

crashes happened at the intersections or at those locations influenced by intersections. Similar to 

the findings of Braitman et al. (2007) and Preusser et al. (1998), intersections appear to increase 

the risk of crashes among the aging populations. 
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Table 4.1 Crash Characteristics (65+ group) 

 Counties 
Characteristics Broward Escambia Hillsborough Leon Miami Pinellas 
2010 Pop: 65+ 249,424 42,929 145,237 25,980 352,033 194,099 

Total crashes:65+ 19,759 4,090 13,000 2.448 37,775 14,768 
Factors  

Alcohol/Drugs 382 108 290 30 382 411 
No Alcohol/Drugs 19,377 3,982 12,710 2,418 37,393 14,357 

Intersection 10,393 2,825 6,815 1,413 20,453 9,111 
Daylight 15,747 3,456 10,777 2,049 30,966 12,537 

Other light 
conditions: Dusk, 

Dark 3,935 634 2,223 389 6,554 2,231 
Clear Weather 15,057 2,806 9,639 1,712 29,380 11,544 
Rainy Weather 4,622 370 967 230 2,546 953 

 
In order to identify the crash hotspots in Broward, Escambia, Hillsborough, Leon, Miami 

and Pinellas County, the next section will present the results of the GIS-based spatial, temporal 

and spatio-temporal applications on the selected counties. 

4.1 Spatial Analysis 

In this study, we implement the Getis-Ord (Gi*) and Kernel Density Estimation (KDE) 

methods in order to analyze the aging-involved crashes spatially. The following sections will 

present the results of this analysis for the six counties studied, starting with the Gi* applications. 

Spatial results for other counties can be found in Appendix B. 

4.1.1 Getis-Ord (Gi*) 

4.1.1.1 Broward County 
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Figure 4.11 Gi* Analysis for the Broward County 

 

Figure 4.1 shows the results obtained from the Gi* application on the Broward County, 

where Gi* methodology can be used to show the hot (shown as red) and cold (shown as green) 

spots regarding the crash clusters. These spots are presented with three levels of confidence in 

this analysis: 90%, 95% and 99% (95% confidence interval is the one mostly used). Please note 

that hot spots indicate the high crash risk locations for the Broward County. Figure 4.1 shows 

three major statistically significant hotspots with more than 90% confidence intervals, from this 

county. The hotspots identified are the Hallandale Beach, Nova Dr., and the W Sample Rd areas, 

with the 95% confidence.  
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4.1.1.2 Escambia County 

 

 
Figure 4.12 Gi* Analysis for the Escambia County 

 

Similar results are obtained after analyzing the Escambia County based on the Gi* 

analysis are shown in Figure 4.2 for the given confidence levels. One major hotspot is detected 

near the downtown Pensacola region with more than 90% confidence interval in the Escambia 

County.   
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4.1.1.3 Hillsborough County 

Gi* method is also applied on the roadway network of the Hillsborough County, which 

revealed the locations of the hotspots (Figure 4.3). This method identified 4 major hotspots in the 

Hillsborough County with the 95% confidence level: (1) Sun City Center, (2) Brandon, (3) 

University of South Florida, and (4) Greater Northdale regions. 

 
Figure 4.13 Gi* Analysis for the Hillsborough County 
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4.1.1.4 Leon County 

Figure 4.4 shows the hot and cold spots identified after the Gi* analysis for the Leon 

County. Two major hotspots are detected in the Leon County: The first one is around the 

Raymond Diehl Rd extended to the Capital Circle NE, and the second hotspot is at the 

intersection of N Monroe St and N Duval St.  

 
Figure 4.14 Gi* Analysis for the Leon County 
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4.1.1.5 Miami-Dade County 

Hotspots detected for the Miami-Dade County are shown in the Figure 4.5. Four hotspots 

identified using the Gi* application are located at North Miami, Hialeah, Coral Gables and 

Miami International Airport regions. 

 

 
Figure 4.15 Gi* Analysis for the Miami-Dade County 
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4.1.1.6 Pinellas County 

Figure 4.6 shows the hotspots identified for the Pinellas County. Two hotspots are 

identified with the 95% confidence level: Palm Harbor region on the US Highway 19 and 

Kenneth City region.  

 

 
Figure 4.16 Gi* Analysis for the Pinellas County 
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4.1.2 Planar Kernel Density Estimation (KDE) 

Planar KDE works by creating the mole hills for every individual crash point. Next, a 

continuous density surface is created heaping those hills across the study area. In this section, 

planar KDE is used for all the counties in order to identify the hotspots. 

4.1.2.1 Broward County 

Figure 4.7 shows the hotspots identified from the planar KDE application on the Broward 

County. Basically, dark blue areas in Figure 4.7 indicate more high crash risk locations. The 

most risky locations compared to others are identified as follows: (1) at the Hallandale Beach 

area, and (2) at the town of Davie. 
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Figure 4.17 Planar KDE Application for the Broward County 
 

4.1.2.2 Escambia County 

The hotspots for the Escambia County are identified via the planar KDE method in the 

Figure 4.8. The highest risk associated with the aging-involved crashes is identified near the 

northeast of the City of Pensacola, between the 9th Avenue and Creighton Road. Some parts of 

the southeast Pensacola also appear to be critical.  
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Figure 4.18 Planar KDE Application for the Escambia County 
4.1.2.3 Hillsborough County 

Hillsborough County hotspots with respect to the aging-involved crashes can be seen in 

Figure 4.9. From this analysis, two major hotspots are identified in the Brandon area and in the 

City of Tampa whereas two minor hotspots near the Sun City Center and the University of South 

Florida are observed. 
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Figure 4.19 Planar KDE Application for the Hillsborough County 
4.1.2.4 Leon County 

Leon County hotspots are identified from the planar KDE, and are shown in Figure 4.10. 

The hotspots are observed in the downtown area as well as the northeast of the City of 

Tallahassee. Highest risk locations are found at the following locations: (1) Downtown 

Tallahassee, (2) N Monroe Corridor, and (3) I-10 intersection with the Capital Circle and 

Raymond Diehl Rd.  
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Figure 4.20 Planar KDE Application for the Leon County 

 

4.1.2.5 Miami-Dade County 

The hotspots identified for the Miami-Dade County are shown in the Figure 4.11. The 

most significant hotspot in the Miami-Dade County is identified near the Coral Gables and 

Fontainebleau regions.  
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Figure 4.21 Planar KDE Application for the Miami-Dade County 
 

4.1.2.6 Pinellas County 

Figure 4.12 shows the hotspots identified in the Pinellas County based on the planar KDE 

approach. Figure 4.12 shows three major hotspots near the Palm Harbor, St Petersburg and 

Kenneth City regions. 
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Figure 4.22 Planar KDE Application for the Pinellas County 
 

4.1.2.7 Comparison of the Planar Methods: Kernel Density and Gi* 

As clearly described in Chapter 2 and 3, planar KDE is a non-parametric estimation that 

makes use of the individual data points, and it uses the Euclidean (network) distance for 

calculating the distance between two crash points. The points that are closer to each other tend to 

form a cluster and therefore have more chance to create a hotspot region. On the other hand, Gi* 
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statistics creates the statistically significant spatial clusters by aggregating the data points, and 

cannot directly work on the individual data points. It is also a second order estimate which 

examines the spatial dependency of the crash points.  

In this study, we use the Hillsborough County as an example to compare these two planar 

methods. Figure 4.13 illustrates the visual differences and similarities between these two 

methods. 

 

 
Figure 4.23 Comparison of Planar KDE and Gi* Methods for the Hillsborough County 
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Figure 4.24 Comparison of Planar KDE and Gi* Methods for the Broward County 

 

Figure 4.13 shows that Gi* method identified four major hotspots with the 95% 

confidence level: (1) Sun City Center, (2) Brandon, (3) University of South Florida, and (4) 

Greater Northdale regions. Planar KDE method, on the other hand, identified two major hotspots 

in the Brandon area and the City of Tampa as well as two minor hotspots near the Sun City 

Center and the University of South Florida. Hotspots identified in the City of Tampa are not 

identified by the Gi* method. This is clearly a drawback of the Gi* method since the downtown 

Tampa possesses a high crash risk for aging-involved accidents based on the data available. 

Similar results are obtained for other counties as well. Gi*method does not show those 

major hotspots that are identified by the planar KDE. Such an example can also be presented for 

the Broward County where two major hotspots identified by the planar KDE method (namely 

Hollywood and Fort Lauderdale regions) are not detected by the Gi* method (Figure 4.14). 
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Similarly, in the Pinellas County, the downtown St Petersburg is identified as a critical 

hotspot based on the planar KDE, which is not detected by the Gi* method (Figure 4.15). 

 

     

Figure 4.25 Comparison of Planar KDE and Gi* Methods for the Pinellas County 
 

4.1.3 Network Kernel Density Estimation (KDE) 

We will present the results of network KDE approach in this section. These are 

implemented using ArcGIS 10 where the SANET method (Okabe, 2006) is used to conduct the 

network KDE approach. The SANET method also provides a means of visualizing the accident 

distributions over the whole roadway network in 3-D. The peaks in these maps represent those 

locations that have higher number of accidents than others. In order to determine the hotspot 

locations, we first focus on each whole county. Next, based on the network distance-based kernel 

density estimates, we determine the high risk regions, and finally the hotspot locations. These 
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hotspots are shown for the selected six counties. Hotspots for the remaining counties are shown 

in Appendix C. Then, five-mile and three-mile buffer zones are created in order to investigate the 

effect of 65+ population on the crash occurrence at the hotspots. 

4.1.3.1 Broward County 

 

 
Figure 4.26 Network KDE (2D) Application for the Broward County 
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Figure 4.27 Network KDE (3D) Application for the Broward County 
 

 

Figure 4.28 High Crash Risk Location for Broward County 
 

 

Table 4.2 Hotspots for the Broward County 
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Broward County- Hotspot-1 

Age 
Grou

p 

County Crashes Hallandale Beach Blvd. Crashes 

Total 
Intersecti

on 
Crashes 

Tot
al 

No. of 
Reside
nts in 

3-Mile 
Radius 

No. of 
Reside
nts in 

5-Mile 
Radius 

No. of 
Crashes per 

1000 
Residents Intersectio

n Crashes 

Crashes 
at 

Intersecti
on/ 

Influence
d by 

Intersecti
on 

3-
Mile 

5-
Mile 

65+ 19,75
9 8,912 328 36,079 59,345 9 6 192 

(58.5%) 
211 

(64.3%) 

65- 111,0
97 41,546 651 120,44

3 
225,14

6 5 3 385 (59%) 412 
(63.2%) 

 Hotspot- Hallandale Beach Blvd. : Federal Hwy. to S Ocean Drive 

Broward County- Hotspot-2 

Age 
Grou

p 

County Crashes W Sample Rd. Crashes 

Total 
Intersecti

on 
Crashes 

Tot
al 

No. of 
Reside
nts in 

3-Mile 
Radius 

No. of 
Reside
nts in 

5-Mile 
Radius 

No. of 
Crashes per 

1000 
Residents 

Intersecti
on 

Crashes 

Crashes 
at 

Intersecti
on/ 

Influence
d by 

Intersecti
on 

3-
Mile 

5-
Mile 

 

65+ 19,759 8,912 162 23530 61409 7 3 100 
(61.7%) 

114 
(70%) 

65- 111,09
7 41,546 532 78693 252457 7 2 297 

(55.8%) 
349 

(65.6%) 
 Hotspot- W Sample Rd from US HWY 441 to NW 42ND AVE 

 

Figure 4.16 shows the hotspot locations identified based on the network KDE application 

on the Broward County. Figure 4.17 shows the 3-D view of the hotspots over all the county 

whereas Figure 4.18 shows high crash risk locations are selected based on the high density 

values: Southeast of the Broward County, which includes the City of Fort Lauderdale. Figures 
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4.16 through 4.18 clearly show that aging-involved accidents mostly occur at the intersections 

for the Broward County. This indicates that intersections appear to be significantly problematic 

for the aging populations. Please note that other adult aging populations may also have relatively 

more accidents on the intersections; however, the locations of those intersections may differ for 

the aging and other adult age groups. 

Analyzing the high peaks in the hotspot region, two major hotspots are selected for 

further analysis. Hallandale Beach (from Federal Highway to S. Ocean Drive) and W. Sample 

Rd (From US Highway 441 to NW 42nd Avenue). The crash characteristics in these hotspots are 

presented in Table 4.2. Out of the 328 aging-involved crashes that occurred at the Hotspot 1, 

64.3% of these crashes happened at the intersections and those areas influenced by the 

intersections. The number of crashes per 1000 residents of 65+ is almost doubled compared to 

65- people. For the second hotspot, similarly, 70% of the overall crashes (162) took place at the 

intersections, and the number of crashes per 1000 residents of 65+ are higher than the 65- age 

group. 

4.1.3.2 Escambia County 
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Figure 4.29 Network KDE (2D): Escambia County 

 

 

Figure 4.30 Network KDE (3D): Escambia County 
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Figure 4.31 High Crash Roadways: Escambia County 
 

The hotspots identified for the Escambia County are shown in Figure 4.20 based on the 

network KDE method. For the Escambia County, the 3-D view of the hotspots is shown in the 

Figure 4.21, and high crash risk locations are shown in the Figure 4.22. Similar to the Broward 

County, aging-involved accidents mostly occur at the intersections for the Escambia County, too. 

Based on the results of the network KDE analysis, two major hotspots are identified: N. 

9th Ave (from Creighton Rd. to Bayou Blvd.) and N. Davis Hwy (from University Parkway to 

Brent Ln.). Table 4.3 shows the crash and population characteristics for these hotspots in the 

Escambia County. 175 crashes took place in the Hotspot 1, out of which 70.2 % are those crashes 

at the intersections and at those locations influenced by the intersections. Hotspot 1 shows that 

65+ intersection crashes are more than those for other age groups. Crash rate for 1000 residents 

for 65+ and 65- populations is almost the same. For Hotspot 2, out of 203 aging-involved 

crashes, 166 crashes are at the intersections and at those locations influenced by the intersections. 

Population crash rates are approximately equal for both age groups. 
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Table 4.3 Hotspots for the Escambia County 

Escambia County- Hotspot-1 

Age 
Gro
up 

County 
Crashes N 9th Ave Road Crashes 

Tot
al 

Intersect
ion 

Crashes 

Tot
al 

No. of 
Reside
nts in 

3-Mile 
Radius 

No. of 
Residents 
in 5-Mile 
Radius 

No. of 
Crashes per 

1000 
Residents Intersect

ion 
Crashes 

Crashes 
at 

Intersecti
on/ 

Influence
d by 

Intersecti
on 

3-
Mile 5-Mile 

65+ 409
0 2257 175 12370 21286 14 8 93 

(53%) 
123 

(70.2%) 

65- 204
37 9601 654 52179 88556 13 7 335 

(51.2%) 
493 

(75%) 
 Hotspot- N 9th Ave- Creighton Rd to Bayou Blvd 

Escambia County- Hotspot-2 

Age 
Grou

p 

County 
Crashes N Davis Hwy Road Crashes 

Tot
al 

Intersec
tion 

Crashes 

Tot
al 

No. of 
Reside
nts in 
3-Mile 
Radiu

s 

No. of 
Reside
nts in 
5-Mile 
Radius 

No. of Crashes 
per 1000 
Residents Intersec

tion 
Crashes 

Crashes 
at 

Intersect
ion/ 

Influenc
ed by 

Intersect
ion 

3-
Mile 5-Mile 

65+ 409
0 2257 203 12991 24789 16 8 113 

(55.6%) 
166 

(81.7%) 

65- 204
37 9601 791 54179 89751 15 9 415 

(52.4%) 
577 

(73%) 
 Hotspot- N Davis Hwy- University Pkwy to Brent Ln 
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4.1.3.3 Hillsborough County 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 Network KDE (2D) Application for the Hillsborough County 
 

 

Figure 4.33 Network KDE (3D) Application for the Hillsborough County 
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Figure 4.34 High Crash Roadways Application for the Hillsborough County 
 

Figure 4.22 shows those hotspots for the Hillsborough County that is identified by the 

network KDE method. The 3-D view of the hotspots is shown in the Figure 4.23 whereas Figure 

4.24 shows high crash risk roadways of the Hillsborough County. 

From the network KDE analysis, two major hotspots are identified for deeper analysis: 

Brandon Blvd and State Hwy (from I-75 to N. Miller Rd.) and Sun City Blvd (from I-75 to N. 

US Highway 301). Table 4.4 presents the characteristics of the crashes that took place inside 

these hotspots. 4,552 crashes occurred in the Hotspot 1, out of which 54.3% crashes happened at 
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the intersections or at those locations influenced by the intersections. Table 4.4 shows that 

crashes per 1000 residents are higher for the 65+ age group. Similarly, 316 crashes took place at 

the second hotspot, and 73.7% of those crashes occurred at the intersections and other locations 

influenced by the intersections. This rate is significantly high for the 65+ populations compared 

to other age group crashes. Crash rates per 1000 residents are also more for the 65+ age group.  

 

Table 4.4 Hotspots for the Hillsborough County 
Hillsborough County- Hotspot-1 

Ag
e 

Gr
ou
p 

County Crashes Brandon Blvd & State Hwy Crashes 

Total 
Intersecti

on 
Crashes 

Tot
al 

No. of 
Residen
ts in 3-
Mile 

Radius 

No. of 
Residen
ts in 5-
Mile 

Radius 

No. of 
Crashes per 

1000 
Residents Intersectio

n Crashes 

Crashes at 
Intersectio

n/ 
Influence

d by 
Intersectio

n 
3-

Mile 
5-

Mile 

65
+ 

1300
0 5480 552 15574 24949 35 22 228 

(41.3%) 
300 

(54.3%) 

65- 9110
5 31043 255

2 102160 165216 25 15 1019 
(40%) 

1332 
(52%) 

 Hotspot - Brandon Blvd & State Hwy- 60 from I-75 to N Miller Rd 
Hillsborough County- Hotspot-2 

Age 
Grou

p 

County Crashes Sun City Blvd Crashes 

Total 
Intersecti

on 
Crashes 

Tot
al 

No. of 
Residen
ts in 3-
Mile 

Radius 

No. of 
Residen
ts in 5-
Mile 

Radius 

No. of 
Crashes per 

1000 
Residents Intersectio

n Crashes 

Crashes at 
Intersectio

n/ 
Influence

d by 
Intersectio

n 
3-

Mile 
5-

Mile 

65+ 1300
0 5480 316 15979 20158 20 16 208 

(65.8%) 
233 

(73.7%) 

65- 9110
5 31043 315 13588 30676 23 10 158 (50%) 189 (60%) 

 Hotspot- Sun City Blvd- from I-75 to N US Hwy 301 
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4.1.3.4 Leon County 

Using the network KDE analysis, aging-involved crash hotspots are identified as shown 

in Figure 4.27. Figure 4.28 shows the 3-D view of the hotspots and Figure 4.29 shows the high 

crash risk roadways of the Leon County. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35 Network KDE (2D) Application for the Leon County 
 

Figure 4.27 shows that the roadways containing the most number of crashes (hotspots) 

are as follows: Capital Circle and Thomasville Rd intersection with I-10, and N. Monroe Road 

(from John Knox Rd. to Callaway Rd.). Table 4.5 shows the crash and population characteristics 

for these two hotspots. Out of 75 crashes that occurred within the Hotspot 1, 63 crashes are at the 

intersections/locations that are influenced by intersections (84%). The 65+ crash rate per 1000 

65 



residents is higher than other age group crashes for the Hotspot 1; however, this rate is the same 

for the Hotspot 2. The aging-involved intersection crashes at the Hotspot 2 is 74% of the total 

crashes that took place at that hotspot. 

 

 

Figure 4.36 Network KDE (3D) Application for the Leon County 
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Figure 4.37 High Crash Roadways Application for the Leon County 
 

Table 4.5 Hotspots for the Leon County 
 

Leon County- Hotspot-1 

Age 
Group 

County Crashes Capital Circle Crashes 

Total Intersectio
n Crashes Total 

No. of 
Residents 
in 3-Mile 
Radius 

No. of 
Residents 
in 5-Mile 
Radius 

No. of 
Crashes per 
1000 
Residents 

Intersectio
n Crashes 

Crashes at 
Intersection/ 
Influenced by 
Intersection 3-

Mile 
5-
Mile 

65+ 2448 1169 75 7906 14858 9 5 52 
(69.3%) 63 (84%) 

65- 2157
2 8886 312 29370 94603 11 3 204 

(65.3%) 235 (75.3%) 

 
Hotspot- Capital Circle: at Thomasville Rd., at I-10, at Raymond Diehl Rd.; Thomasville 
Rd at Timberlane Rd., Thomasville Rd. at Raymond Diehl Rd., and Raymond Diehl Rd at 
Lonnbladh Rd. 

Leon County- Hotspot-2 

Age 
Group 

County Crashes N Monroe 

Total Intersectio
n Crashes Total 

No. of 
Residents 
in 3-Mile 
Radius 

No. of 
Residents 
in 5-Mile 
Radius 

No. of 
Crashes per 
1000 
Residents 

Intersectio
n Crashes 

Crashes at 
Intersection/ 
Influenced by 
Intersection 3-

Mile 
5-
Mile 

65+ 2448 1169 66 8651 14645 8 5 39 (59%) 49 (74.2%) 

65- 2157
2 8886 378 26099 127353 14 3 190 

(50.2%) 244 (64.5%) 
 Hotspot - N Monroe- N Monroe/John Knox Rd to N Monroe/Callaway Rd 
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4.1.3.5 Miami-Dade County 

Aging-involved crash hotspots in Miami-Dade County are identified by the network KDE 

(Figure 4.28). Figure 4.31 and Figure 4.32 show the 3-D view of these hotspots and the high 

crash risk roadways in the Miami-Dade County, respectively. 

 

 

Figure 4.38 Network KDE (2D) Application for the Miami-Dade County 
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Figure 4.39 Network KDE (3D) Application for the Miami-Dade County 
 

 

Figure 4.40 High Crash Roadways Application for the Miami-Dade County 
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As seen from Figure 4.30, Biscayne Rd. (from NE 213th St. to NE 183rd St.) and W. 

49th St (from W. 17th St. to W. 6th Ave.) are selected as the major hotspots shown in Table 4.6. 

Although there are other roadways with relatively more peaks, these hotspots show the highest 

peaks for shorter roadway lengths. This indicates substantially higher intensities in these areas. 

Therefore, these locations are selected for further analysis. There were 556 crashes involving 

drivers age 65+ along Biscayne Boulevard (Hotspot 1), 57.7% of these crashes belong to the 65+ 

populations. The number of crashes at intersections were also higher in the age 65+ group 

(65.6%) compared with the crashes involving drivers under the age 65 (63%). Similarly, for the 

Hotspot 2, 295 crashes occurred involving the aging populations where 68.8% of those crashes 

were at the intersections or those areas that were influenced by the intersections. The other age 

group also showed a similar result with a percentage of 68.5%. 

4.1.3.5 Pinellas County 

Figure 4.31 shows the hotspots identified from the network KDE for the Pinellas County. 

A 3-D view of network KDE give a clear picture of the hotspots, which is presented in Figure 

4.32. Figure 4.33, on the other hand, shows the high crash risk roadways in the Pinellas County. 

For the Pinellas County, two hotspots are identified: U.S. HWY 19 N. (from Alderman 

Rd. to Curlew) and Main St. (from Keene Rd. to Belcher Rd.). These locations are observed to 

have high number of aging-involved crashes. The crashes at these hotspots are analyzed in Table 

4.7. For the Hotspot 1, out of 537 crashes, 36.3% crashes occurred at the intersection and at those 

locations influenced by the intersections, which is approximately the same for other age groups. 

In the second hotspot, 72% and 74.5% of the crashes are at the intersection and those locations 

influenced by the intersections for the 65+ and 65- populations, respectively. Table 4.7 also 
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shows that the crash rate percentages/1000 residents for the 65+ and 65- populations are 

approximately the same. 

Table 4.6 Hotspots for the Miami-Dade County 
 

Miami-Dade County- Hotspot-1 

Age 
Grou

p 

County Crashes Biscayne Road Crashes 

Total Intersectio
n Crashes Total 

No. of 
Resident
s in 3-
Mile 

Radius 

No. of 
Resident
s in 5-
Mile 

Radius 

No. of Crashes 
per 1000 
Residents Intersection 

Crashes 

Crashes at 
Intersection
/ Influenced 

by 
Intersection 3-

Mile 
5-

Mile 

65+ 37,775 19,203 556 41,054 43,076 14 13 321 (57.7%) 365 
(65.6%) 

Under 
65 

229,46
7 100,000 2,00

6 143,042 185,205 14 11 1,111 
(55.3%) 

1,264 
(63%) 

 Hotspot- Biscayne Rd.: NE 213th St. to NE 183rd St. 

Miami-Dade County- Hotspot-2 

Age 
Grou

p 

County Crashes W 49th St road crashes 

Total Intersectio
n Crashes Total 

No. of 
Resident
s in 3-
Mile 

Radius 

No. of 
Resident
s in 5-
Mile 

Radius 

No. of Crashes 
per 1000 
Residents Intersection 

Crashes 

Crashes at 
Intersection
/ Influenced 

by 
Intersection 

3-
Mile 

5-
Mile 

65+ 37,775 19,203 295 46,597 77,542 6 4 193 (65.4%) 203 
(68.8%) 

Under 
65 

229,46
7 100,000 1,18

2 159,019 337,465 7 4 776 (65.6%) 810 
(68.5%) 

 Hotspot- W 49th St- W 17th Ct to W 6th Ave. 

 

 

71 



 

Figure 4.41 Network KDE (2D) Application for the Pinellas County 

 

Figure 4.42 Network KDE (3D) Application for the Pinellas County 
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Figure 4.43 High Crash Roadways Application for the Pinellas County 
 

Table 4.7 Hotspots for the Pinellas County 
Pinellas County- Hotspot-1 

Age 
Group 

County Crashes U.S. HWY 19 N road crashes 

Total Intersectio
n Crashes Total 

No. of 
Residents 
in 3-Mile 
Radius 

No. of 
Residents 
in 5-Mile 
Radius 

No. of 
Crashes per 
1000 
Residents 

Intersectio
n Crashes 

Crashes at 
Intersection/ 
Influenced 
by 
Intersection 3-

Mile 
5-
Mile 

65+ 14,768 7,322 537 34,473 55,518 16 10 195 
(36.3%) 285 (53%) 

65- 58,613 24,769 1,667 77,070 139,802 22 12 619 (37%) 894 (53%) 

 Hotspot- U.S. HWY 19 N- from Alderman Rd to Curlew 

Pinellas County- Hotspot-2 

Age 
Group 

County Crashes Main St road crashes 

Total Intersectio
n Crashes Total 

No. of 
Residents 
in 3-Mile 
Radius 

No. of 
Residents 
in 5-Mile 
Radius 

No. of 
Crashes per 
1000 
Residents 

Intersectio
n Crashes 

Crashes at 
Intersection/ 
Influenced 
by 
Intersection 3-

Mile 
5-
Mile 

65+ 14,768 7,322 191 30,211 53,121 6 4 121 
(63.3%) 138 (72%) 

65- 58,613 24,769 358 68,374 136,485 5 5 231 (64%) 277 (74.5%) 

 Hotspot- Main St- from Keene Rd to Belcher Rd 
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4.1.3.6 Comparison of the KDE Methods: Planar and Network KDE 

It is important to reiterate the differences between the planar KDE and network KDE 

methods here. Basically, the planar KDE method obtains the density maps based on the planar 

(Euclidean) distance calculations without using the roadway network itself. That is, the distances 

from the center of the hotspot are still calculated without considering the existing roadway 

network structure. The accident density maps also extend over the areas like parks, residential 

areas, and lakes where there are no roadways and therefore no accidents. In order to overcome 

these drawbacks, the SANET method is introduced to identify the accident hotspots more 

accurately. Through this methodology, it is possible to detect the roadways that have a high 

number of aging-involved accidents where every distance between the accidents is calculated 

based on the actual roadway (network) distance.  

Moreover, the planar KDE method identifies all the roadways and intersections that 

reside in the peak density region as ‘high accident’ risk locations. This is critical since it may 

cause the following problems: (a) Overestimation: Some roadways that do not actually possess 

high risk are shown to be risky, (b) Underestimation: Since multiple roadways are shown as 

critical locations rather than the actual roadways that have high accident risk, one may not give 

the needed attention to the actual high risk locations. The network KDE approach, on the other 

hand, solves these two problems using the actual roadway distances for kernel density 

estimation. 

Figure 4.34 shows the comparative results between the planar and network KDE 

approaches. The planar KDE approach for Escambia County shows the accident hotspots located 

in the Northeast and Southeast areas of the largest city of Escambia, namely Pensacola. The 

network KDE approach, on the other hand, enables us to identify the exact locations of the most 
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critical hotpot corridors such as the N. Davis Road corridor between the 9th Avenue and 

Highway 29. This hotspot location in the Northeast Pensacola is basically the one that has the 

highest number of accidents for those aged 65 and over. However, the network KDE approach 

does not show any critical hotspots in the Southeast of Pensacola as identified by the planar KDE 

approach. Although this may not be entirely visible from the 2-D maps, they are typically 

identifiable by the high surface peaks in a three-dimensional (3D) view of accidents (Figure 4.20 

and Figure 4.21). This can lead us to a more detailed assessment of aging population-involved 

accidents via another feature offered by the SANET method: 3-D visualization of the accidents 

on the roadway network. This approach allows us to observe high accident risk locations more 

clearly and accurately. 

The drawbacks of the planar KDE approach is more visible for the Hillsborough and 

Pinellas counties. For example, Sun City Center Boulevard of Hillsborough County, which is 

shown as a moderate hotspot in the planar KDE-based maps of Figure 3, has the highest peak 

(highest accident risk) in the 3-D view based on the network KDE approach (Figure 4.23). 

Similarly, in Pinellas County, the Saint Petersburg area is shown as a hotspot location based on 

the planar KDE approach; however, the whole area is not actually a hotspot but rather certain 

roadways have higher accident rates than others in that area, which is more precisely shown 

through using the SANET method (Figure 4.33). 

The comparison maps reveal other interesting trends. Accidents where aging populations 

are involved do not necessarily cluster the same areas where there are clusters for other age 

groups such as the downtown areas or other typically congested regions. This is an interesting 

pattern for aging road users which suggests that they may not necessarily prefer driving on 

congested or busy roadways as other age groups may do. Many aging drivers may actually prefer 
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to use familiar nearby streets while shopping, volunteering or socializing, which can be the 

prominent reason behind how aging-involved accident spatial patterns differ from other adult age 

groups. This finding is also correlated with temporal patterns of aging-involved accidents, which 

will be discussed in the Section 4.2. 

 

 
 

Figure 4.44 Planar and Network KDE Comparison for the Escambia County 
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Figure 4.45 Planar and Network KDE Comparison for the Hillsborough County 

 
 

Figure 4.46 Planar and Network KDE Comparison for the Pinellas County 
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4.1.3.6 Comparison of Crashes based on Different Adult Age Groups 

This section presents a comparative analysis based on identifying the differences in the 

high crash risk locations for different age groups: 65+, 50-64, and 50- populations. Especially 

50-64 age group is critical since they represent the Baby Boom generation. We will present our 

application for the Leon and Miami-Dade counties. Figure 4.37, Figure 4.38 and Figure 4.39 

show the resulting 3-D SANET maps via the network KDE analysis for the 65+, 50-64 and 50- 

age group, respectively for Leon County whereas Figure 4.40, Figure 4.41, Figure 4.42 present 

the same results for Miami-Dade County. 

Figure 4.37 and Figure 4.38 show that the two hotspots identified for the 65+ age group 

are also critical for the 50-64 age groups: Raymond Diehl Rd., Capital Circle, Thomasville Rd 

and I-1 intersection as well as the N. Monroe Corridor. However, there is also another major 

hotspot for the 50-64 age group, which is the downtown Tallahassee region. This area is also 

critical for the 50- age group (Figure 4.39). On the other hand, in Miami-Dade County, Figure 

4.40, Figure 4.41 and Figure 4.42 show two major hotspots: Biscayne Rd (from NE 213th St. to 

NE 183rd St.) and W. 49th St (from W. 17th St to W. 6th Ave) for all age groups. This 

comparison reveals an interesting pattern for 65+ populations. They do not have hotspots at those 

locations such as downtowns and heavily congested areas. Rather, 65+ crashes tend to occur 

away from those areas heavily used by the working class populations. Hotspot locations for the 

50- age group are totally different than those for the 65+ populations. There are hotspots around 

the W. Tennessee St, W. Pensacola St. and around the Florida State University for Leon County 

whereas Miami Beach is a major hotspot for Miami-Dade County. This shows the effect of 

working age groups as well as the students of the Florida State University, which shifts the major 

hotspots towards the west of Tallahassee. This type of analysis will benefit the transportation 
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agencies by providing the vital information with regards to the age-specific differences in the 

major hotspots. 

 

 
Figure 4.47 3-D Network KDE Application for the 65+ Age Group in the Leon County 
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Figure 4.48 3-D Network KDE Application for the 50-64 Age Group in the Leon County 

 

 
Figure 4.49 3-D Network KDE Application for the 50- Age Group in the Leon County 
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Figure 4.50 3-D Network KDE Application for the 65+ Age Group in the Miami-Dade 
County 

 
 

 

Figure 4.51 3-D Network KDE Application for the 50-64 Age Group in the Miami-Dade County 
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Figure 4.52 3-D Network KDE Application for the 50- Age Group in the Miami-Dade County 
 

4.2 Temporal Analysis 

In this section, temporal analysis is provided through the use of spider plots for the 

selected six counties selected. Temporal results for other counties studied can be found in 

Appendix D. 

4.2.1 Broward County 

Figure 4.43 shows the hourly, daily and monthly variations in the aging-involved 

accidents for the Broward County, respectively. Most of these accidents occur during the mid-

hours of the day (between 11:00 AM and 04:00 PM), not during the peak hours, the peak being 

usually before the evening rush hours. From the daily variation plots, we observe that higher 

accident rates during the weekdays when compared to the weekends. Monthly variation plots, on 

the other hand, do not really show a significant change in the accident rates between the months. 
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a. Hourly                                      b. Daily                                       c. Monthly 

Figure 4.53 Temporal Analysis of the Broward County 
 

4.2.2 Escambia County 

Figure 4.44 shows the hourly, daily and monthly variations in the aging-involved 

accidents for the Escambia County, respectively. Most of these accidents occur during the mid-

hours of the day (between 11:00 AM and 06:00 PM), not during the peak hours, the peak being 

usually before the evening rush hours. From the daily variation plots, we observe that higher 

accident rates during the weekdays when compared to the weekends. Monthly variation plots, on 

the other hand, do not really show a significant change in the accident rates between the months. 

 

 

 

 

 

 

         

a. Hourly                                      b. Daily                                       c. Monthly 

Figure 4.54 Temporal Analysis of the Escambia County 
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4.2.3 Hillsborough County 

Figure 4.45 shows the hourly, daily and monthly variations in the aging-involved 

accidents for the Hillsborough County, respectively. Most of these accidents occur during the 

mid-hours of the day (between 12:00 AM and 05:00 PM), not during the peak hours, the peak 

being usually before the evening rush hours. From the daily variation plots, we observe that 

higher accident rates during the weekdays when compared to the weekends. Hillsborough 

County also shows a slight decrease in the aging-involved accidents during the summer months. 

 

 

 

 

 

   

a. Hourly                                      b. Daily                                       c. Monthly 

Figure 4.55 Temporal Analysis of the Hillsborough County 
 

4.2.4 Leon County 

   
a. Hourly                                      b. Daily                                       c. Monthly 

Figure 4.56 Temporal Analysis of the Leon County 
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Figure 4.46 shows the hourly, daily and monthly variations in the aging-involved 

accidents for the Leon County, respectively. Most of these accidents occur during the mid-hours 

of the day (between 12:00 AM and 05:00 PM), not during the peak hours, the peak being usually 

before the evening rush hours. From the daily variation plots, we observe that higher accident 

rates during the weekdays when compared to the weekends. Hillsborough County also shows a 

decrease in the aging-involved accidents between April and September. 

4.2.5 Miami-Dade County 

 

   
a. Hourly                                      b. Daily                                       c. Monthly 

Figure 4.57 Temporal Analysis of the Miami-Dade County 
  

Hourly, daily and monthly variations in the aging-involved accidents for the Miami-Dade 

County is presented in Figure 4.47. Most of these accidents occur during the mid-hours of the 

day (between 10:00 AM and 04:00 PM), not during the peak hours, the peak being usually before 

the evening rush hours. From the daily variation plots, we observe that higher accident rates 

during the weekdays when compared to the weekends. Hillsborough County also shows an 

increase in the aging-involved accidents between September and December. 
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4.2.6 Pinellas County 

 

Figure 4.48 shows the hourly, daily and monthly variations in the aging-involved 

accidents for the Pinellas County, respectively. Most of these accidents occur during the mid-

hours of the day (between 12:00 AM and 04:00 PM), not during the peak hours, the peak being 

usually before the evening rush hours. From the daily variation plots, we observe that higher 

accident rates during the weekdays when compared to the weekends. Monthly variation plots do 

not really show a significant change in the accident rates between the months except the month 

of March. Pinellas County also show a slight decrease in the aging-involved accidents during the 

summer months. 

 

   
a. Hourly                                      b. Daily                                       c. Monthly 

Figure 4.58 Temporal Analysis of the Pinellas County 
 

4.2.7 Summary 

This analysis reveals an interesting hourly pattern for the aging-involved accidents. Most 

of these accidents occur during the mid-hours of the day, not during the peak hours, the peak 

being usually before the evening rush hours. That is, we do not observe a peak in the morning 

and evening rush hours as we would expect for the working age group accidents. This makes the 
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aging-involved accidents unique in the sense they do not follow the usual pattern. This may be 

due to the fact that most aging Floridians are retirees and/or they do not prefer to drive in the 

rush hours. 

From the daily variation plots, we also observe higher accident rates during the weekdays 

when compared to the weekends. This may reveal a specific preference for aging people: driving 

during the weekdays more than weekends. Monthly variation plots, on the other hand, do not 

really show a significant change in the accident rates between the months except the month of 

March for Pinellas and the month of December for Miami-Date. Broward, Hillsborough, Miami-

Dade and Pinellas counties also show a slight decrease in the aging-involved accidents during the 

summer months whereas the Escambia and Leon counties show slightly increasing number of 

accidents in the fall and spring seasons, respectively. However, we do not observe a clear picture 

on the accident variation like the hourly and weekly plots. It is clear that this temporal analysis 

can provide us with a better understanding for the variations in the aging-involved accidents 

between hours of the day, days of the week, and months of the year. 

4.3 Spatio-temporal Analysis 

In order to even better comprehend the spatial and temporal patterns of aging-involved 

accidents, an analysis that makes use of both approaches is needed, such as the Comap method. 

The Comap method is used to conduct the spatio-temporal analysis shown in this section, where 

maps are shown for four different time periods of the day. For each time period, spatial 

distribution of the aging-involved accidents are presented for each county, which leads us to the 

temporal hotspots.  

Therefore, this time-based variety for the hotspots can be determined using the Comap 

method efficiently. Identifying accident distribution patterns both spatially and temporally can 
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provide better guidance to the planners on where and when the accident prevention remedies and 

strategies should be applied. Two drawbacks associated with the Comap method is as follows: 

(a) The time periods should always overlap each other, and (b) The number of crashes in each 

time period should be approximately the same. In order to overcome these drawbacks, other 

spatio-temporal methods such as SatScan method can be implemented and compared with the 

results presented in this paper. Spatio-temporal results for other counties studied can be found in 

Appendix E. 

Broward County 

Figure 4.49 shows the spatio-temporal analysis results for Broward County. First, we 

observe that Hallandale Beach area is a major hotspot, and some minor hotspots are also 

observed near Fort Lauderdale. In the afternoon, the intensity of the Ford Lauderdale hotspot 

increases. We also observe that another hotspot is forming around the Dave areas. When we 

reach the evening, the Fort Lauderdale hotspot intensifies even further. At night, the intensity of 

hotspot at near Hallandale Beach decreases while the one for Fort Lauderdale stays the same. 

 

 
 

Figure 4.59 Spatial-temporal Analysis for the Broward County 
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Escambia County 

Figure 4.50 shows the spatio-temporal analysis results for the Escambia County. 

Escambia County has two hotspots in the morning, namely the downtown Pensacola and Brent 

areas; however, as the time progresses, a new hotspot is detected near the Northwest of 

Pensacola. 

 
 

Figure 4.60 Spatio-temporal Analysis for the Escambia County 
Hillsborough County 
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Figure 4.61 Spatio-temporal Analysis for the Hillsborough County 
 

Figure 4.51 shows the spatio-temporal hotspots for the Hillsborough County. For this 

county, the hotspots are detected around New Tampa, Brandon and Sun City Center regions; 

however, they start to fade away as the time passes. 

Leon County 

 

 
 

Figure 4.62 Spatio-temporal Analysis for the Leon County 
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For Leon County, day time hotspots are identified near the N. Monroe Rd., around the 

Florida State University, and the Raymond Diehl Rd. and I-10 intersection (Figure 4.52). As time 

passes, the hotspot near the N. Monroe gets more risky with higher density values whereas the 

hotspot near the Raymond Diehl Rd. loses its intensity. 

Miami-Dade County 

Figure 4.53 shows the hotspots identified from the spatio-temporal analysis conducted for 

the Miami-Dade County. During the day, we observe hotspots near the downtown Miami 

downtown and Haileah region. The intensity of these hotpots reduce in the afternoon and gets 

intensified again in the evening. 

 

 

Figure 4.63 Spatio-temporal Analysis for the Miami-Dade County 
 

Pinellas County 

Hotspots for the Pinellas County are shown in Figure 4.54. In Pinellas, we do not observe 

any change on the hotspot locations; however, the intensity of the accidents around Palm Harbor 

and Tarpon Springs regions clearly increase. 

91 



 

 
 

Figure 4.64 Spatio-temporal analysis for the Pinellas County 
Summary 

This time-based variety for the hotspots can be determined using the Comap method 

efficiently. Identifying accident distribution patterns both spatially and temporally can provide 

better guidance to the planners on where and when the accident prevention remedies and 

strategies should be applied. Two drawbacks associated with the Comap method is as follows: 

(a) The time periods should always overlap each other, and (b) The number of crashes in each 

time period should be approximately the same. In order to overcome these drawbacks, other 

spatio-temporal methods such as SatScan method can be implemented and compared with the 

results presented in this thesis. 

4.4 Regression Analysis 

In order to support the GIS-based approach and achieve a more comprehensive analysis 

of the aging-involved crashes, the significant factors that influence these crashes should be 

analyzed with regression techniques. The utmost importance is given to answer the following 

question: How do aging (65+) crash influencing factors compare with those affecting the crashes 
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involving the 65- age group? This statistical analysis, combined with the GIS-based results, can 

assist state and local agencies in strategic planning efforts for developing appropriate preventive 

measures to improve safety and enhance mobility for aging road users. The knowledge gained 

from the results of this research will not only help identifying the critical factors contributing to 

aging-involved crashes, but can also contribute to the development of more reliable aging-

focused safety plans and models. 

4.4.1 Analysis for the Hotspots 

Among the hotspots identified for Alachua, Bay, Broward, Duval, Escambia, 

Hillsborough, Leon, Miami-Dade, Monroe, Pinellas and Walton counties, two high crash risk 

locations are identified for further analysis. For this purpose, a total of 17,376 aging-involved 

crashes, within the 22 hotspots selected for these eleven counties, are studied via the binary 

logistic regression technique. Here, the dependent variable is 1, if the crash is an aging-involved 

(65+) crash, and 0, otherwise (65-). Table 4.8 presents the proposed binary logit model results 

for the spatial analysis of aging-involved crashes. Please note that the preliminary approach 

included other geometric design characteristics as well as the light and weather conditions; 

however, the insignificant factors are eliminated, which leads to the following independent 

variables (factors) that are used for this analysis: 

• Peak term is a binary variable, which takes a value of 1, if the crash occurs in the 

peak hour, and 0, otherwise. Peak hours in this study are selected as AM Peak 

(07:00 AM – 10:00 AM) and PM Peak (04:00 PM – 07:00 PM). 

• Week factor is a binary variable that indicates whether the crash occurs in a 

weekday or weekend. It is 1, if the crash occurs at a weekday, and 0, otherwise. 
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• AADT is a continuous variable, and represents the Average Annual Daily Traffic 

for the crash location. 

• Speed is a continuous variable, and represents the posted speed limit at the crash 

location. 

• Population is a continuous variable and represented as follows: Proportion of the 

65+ Population over the total population is calculated for a 5-mile buffer zone 

around the hotspot location. 

• Site location is a binary variable, and takes a value of 1, if the crashes occur at the 

intersections, and 0, otherwise. 

• Median is a continuous variable indicating the median width at the crash location. 

• Shoulder width is a continuous variable, indicating the shoulder width at the crash 

location. 

• Lane width is a continuous variable, indicating the lane width at the crash 

location.  

Table 4.8 indicate the factors that are significant and insignificant for the aging-involved 

crashes based on the p-values given the 95% confidence interval. There is a negative coefficient 

for the “Peak hour factor”, which implies that aging-involved crashes are more likely to occur in 

off-peak hours rather than peak hours, when compared to the other age group crashes. This is 

consistent with the previous GIS-based results. There is a positive coefficient for the “Week day 

factor”, suggesting that aging-involved crashes are more likely to occur during the week days 

rather than the weekends, which is also consistent with the GIS-based temporal results.  
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Table 4.8 Logistic Regression Results for Hotspots 

Variable Description Type/Scale Coefficient p-value t-statistics 
Intercept   Constant -2.4473 1.89E-98 -21.05 
Peak Peak Hours Binary -0.354912 6.21E-16 -8.085073 

Week 
Weekday/ 
Weekend Binary 0.3461327 9.25E-14 7.45126 

AADT AADT Continuous -0.004418 0.00178 -3.124878 

Speed 
Posted 
Speed Continuous 0.0019 0.4648 0.7309 

Pop Population Continuous 4.823712 1.20E-61 16.56715 

Sitloc 
Site 
Location Binary 0.089197 0.00109 3.26619 

Medwid 
Median 
Width Continuous 0.0079 6.55E-05 3.992247 

Lanewid Lane Width Continuous -3.778E-04 0.8923 -0.1354 

Shuldwid 
Shoulder 
Width Continuous -0.0117 0.1943 -1.2981 

Number of Valid Observations 1.74E+04 
Pseudo R-square 2.78E-02 

Hosmer-Lemeshow  1.57E+01 
Significance of Model 4.70E-02 

 

There is a negative coefficient for the “AADT”, which indicates that aging-involved 

crashes are more likely to occur on the roadways having less “AADT” than other age groups. 

However, please note that aging populations may not prefer to drive on the heavily congested 

roadways that usually have higher traffic volumes. The “Population coefficient”, with the high 

positive coefficient, has a significantly high effect on the aging-involved crashes. This is very 

interesting since it reveals another location-specific effect that should be analyzed further: More 

aging-involved crashes occur at those areas that have higher aging populations. “Site location” 

has a positive coefficient, from which we can infer that the probability for an aging crash to 

occur at an intersection is more than other age group crashes. “Median width” is observed to 

have a positive coefficient indicating the strong influence of median width on the aging crashes 
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with a positive correlations. From the analysis results, “Posted speed limit”, “Lane width” and 

“Shoulder width” appear to be the insignificant factors. 

4.4.2 Analysis for the Hotspot Intersections with AADT as a Factor 

 

Table 4.9 Logistic Regression Results for the Hotspot Intersections with AADT as a Factor 

Variable Description Type/Scale Coefficient p-value t-statistics 
Intercept   Constant -1.7759 2.61E-31 -11.63895 
Peak Peak Hours Binary -0.2958 3.47E-09 -5.907773 

Week 
Weekday/ 
Weekend Binary 0.3455 2.30E-11 6.685755 

AADT AADT Continuous 1.215E-05 0.9217 0.0983 
Speed Speed Continuous -0.0230 1.35E-08 -5.680046 
POP Population Continuous 6.0006919 1.42E-64 16.96769 

Number of Valid Observations 1.46E+04 
Pseudo R-square 2.49E-02 

Hosmer-Lemeshow  9.46E+00 
Significance of Model 2.21E-01 

 

Both the GIS-based results and the regression analysis provided in the previous section 

indicate that intersections are more critical and therefore possess more risk for aging populations. 

Therefore, all the 161 intersections that reside within the hotspots are selected and separated for a 

deeper regression analysis. Similarly, binary logistics regression analysis is implemented in order 

to identify the factors contributing to the aging-involved intersection crashes compared to other 

age group crashes. Table 4.9 shows the results of this analysis. Only the “Population factor” and 

traffic-related factors are considered for this analysis in order to observe how the change in the 

traffic characteristics influence the aging-involved crashes when compared to other age group 

crashes. Similar to the hotspot regression analysis, “Peak hour” and “Week day” factors have 

positive coefficients, which indicates that aging-involved intersection crashes occur at off-peak 
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hours and on weekdays mostly. “Speed factor” has a negative coefficient indicating that the 

higher posted speed limits lead to less aging-involved crashes. This is also related to the fact that 

aging populations may not prefer to drive on the heavily congested roadways that usually have 

higher posted speed limits. “Population factor”, similar to the hotspot regression, has a high 

positive coefficient, which shows that population is a very significant factor that influences the 

intersection crashes for aging. “AADT” appears to be very insignificant, therefore hourly traffic 

volume will be added to the regression analysis instead of the “AADT” in the next section. 

4.4.3 Analysis for the Intersections with the Traffic Flow as a Factor 

Results presented in Section 4.4.2 indicate that “AADT” does not appear to be a 

significant factor for the aging-involved crashes. However, the number of vehicles on the 

roadway should be critical for the occurrence of crashes. Therefore, we use the actual hourly 

flow data for the regression analysis. This flow data is collected through the Telemetric Traffic 

Monitoring Sites (TTMS) locations, and obtained from the Florida Department of 

Transportation. Since only some of the hotspots had the TTMS locations, those hotspots were 

selected for further analysis. These hotspots belong to the Broward, Miami-Dade, Alachua, 

Monroe and Walton counties. The flow data is extracted from the traffic stations near the 

hotspots. Table 4.10 presents the logistics analysis results where the “Traffic flow factor” also 

appears to be a significant factor given the 90% confidence level. The negative coefficient 

indicates that aging-involved populations have more crashes when lower volumes are observed. 

The effect of the remaining factors are similar to the previous regression analysis presented in 

Table 4.9. 
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Table 4.10 Logistic Regression Results at the Intersections with the Flow as a Factor 
 

Variable Description Type/Scale Coefficient p-value t-Statistics 
Intercept     0.404 0.3659 0.9041 

Peak 
Peak 
Hours Binary -0.21871 0.00204 -3.084992 

Week 
Week day/ 
Weekend Binary 0.2619942 0.00045 3.508759 

Flow Flow Continuous -0.076346 0.07434 -1.784498 
Speed Speed Continuous -0.071234 1.10E-22 -9.801925 
POP Population Continuous 4.1874177 0.00287 2.980998 

Number of Valid Observations 8.27E+03 
Pseudo R-square 1.77E-02 

Hosmer-Lemeshow  1.03E+02 
Significance of Model 0.00E+00 

 

Further analysis is needed in order to identify the effect of average speed of the vehicles 

when the crash occurs, rather than the posted speed limit, which will be obtained from the 

Florida Department of Transportation for those TTMS locations as a future work. 

4.4.4 Summary 

In order to find the factors influencing aging-involved crashes at the county hotspots, a 

binary logistic regression-based analysis is conducted. Results show that “Peak hour factor”, 

“Week day factor”, “AADT”, “Population”, “Intersection factor”, and “Median width” are found 

to be significant factors for aging-involved crashes (@ 95% confidence level). The regression 

analysis for the hotspots also indicate that aging-involved crashes are more likely to happen at 

the intersections. Therefore, in order to provide a more detailed evaluation, 161 intersections that 

reside within the hotspots are selected for further analysis. Only traffic factors and the population 

factor are considered for this intersection-focused crash analysis. First, we consider “AADT” as 

one of the factors. Results show that Peak hour factor”, “Week day factor”, “Posted Speed 

Limit”, and “Population” has a significant influence on the aging-involved crashes at the 
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intersections, when compared to other age group crashes (@ 95% confidence level). However, 

“AADT”, which is a measure of traffic volume, does not appear to be significant. Therefore, a 

second regression analysis is conducted with and addition of the hourly traffic flow as one of the 

factors instead of the “AADT”. In order to conduct such an analysis, those intersection locations, 

that have hourly traffic flow data, are selected. Results show that “Traffic flow” is a significant 

factor that affects the aging-involved crashes compared to other age groups with a 90% 

confidence level. Therefore, it is meaningful to suggest that the actual hourly traffic flow at the 

crash locations can provide more accurate results than the “AADT” while conducting a 

regression analysis on the crashes. 
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Chapter 5 Discussion 

This study is conducted to fill the void of knowledge related to the aging-involved 

crashes. The proposed methodology is applied with the following objectives: (a) identify the 

crash hotspots and time periods in the eleven Florida counties with high crash rates involving 

aging road users, (b) conduct a statistical analysis in order to identify the significant factors that 

affect aging-involved crashes. For this purpose, spatial, temporal and spatio-temporal methods as 

well as a logistic regression-based statistical approach are implemented based on the Florida 

Department of Transportation crash database recorded between the years 2008 and 2012. There 

are several important findings of this study that can assist the transportation officials and policy 

makers for better planning and management of traffic operations with a focus on aging 

populations: 

• Intersections have an adverse effect on the 65+ populations more than other adult 

age groups. This is critical since popular places like grocery stores and 

pharmacies for aging people are often located in the commercial areas that often 

contain numerous intersections for access. This problem can become even more 

complex when multiple intersections, complex signalizations and unexpected 

design features are present. Since redesigning a roadway intersection would be 

very costly to the transportation agencies, it can be more appropriate to maintain 

and operate the current intersections in a better and smarter way, especially in the 

regions that have high aging populations such as the counties studied in this 

paper. These strategies include better signalization, signing and communication 

through IT-based systems such as Intelligent Transportation Systems. This will 

definitely help communicating vital roadway/traffic information to the 65+ 
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population sufficiently and timely, which can be critical for their safety and 

survival. 

• Aging-involved population crashes occur during the mid-day rather than the peak 

hours, which is not a similar pattern for other adult age groups, especially for the 

working populations. This is again related to the aging-specific behavior since 

they may want to visit those places like grocery stores and pharmacies in the least 

congested time periods and with the least traffic present on the roadways. Since 

the 65+ Floridians are mostly comprised of retirees, it is possible for them to 

avoid the rush hours and complete their daily chores within the day. Weekday 

crashes that involve aging people are also more than those of weekend crashes. 

This can also be due to the fact that aging populations prefer to drive and/or 

complete their daily activities like shopping mostly on weekdays rather than 

weekends. Transportation officials, especially those that maintain and operate the 

roadways close to senior living communities, should be aware of the 

consequences of this high crash risk for aging populations during the mid-day 

hours of the weekdays. One strategy that can help solving this problem is 

providing better information to the aging people with regards to the design and 

operational characteristics of the critical and risky intersections. 

• Kernel density analysis based on the Euclidean (planar) distance calculation is the 

most widely used geo-spatial analysis method in the literature and practice in 

order to determine the crash clusters. Results indicate that this may not be the 

most appropriate approach since crashes actually occur on the roadway network 

where distances between two points are not necessarily Euclidean. This approach 
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also overestimates the problem by presenting all the roadways located in the peak 

density regions as risky. Therefore, it is appropriate to suggest that the SANET 

analysis, which makes use of the network (taxi cab) distances, can create more 

accurate density maps. Transportation officials can efficiently use the proposed 

methodology to analyze the aging-specific spatial and temporal characteristics of 

the crashes, which can help identifying the possible reasons behind the high risk 

associated with the hotspot locations. Using this aging-focused application, better 

crash prevention and reduction strategies can be prepared by transportation 

officials. 

• The binary logistic regression analysis supports the GIS-based results, and 

identifies the intersection, peak hour and weekday factors as statistically 

significant. This suggests that aging-involved crashes occur more (a) on 

intersections, (b) during the mid-day, and (c) on the weekdays, compared to other 

adult age groups. Results also suggest that the hourly traffic volume (hourly 

flow), rather than the AADT, provides better insight and understanding for the 

aging-involved crashes. 
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Chapter 6 Conclusions and Future Recommendations 

This study presents a methodology to evaluate and analyze the aging-involved roadway 

accidents via GIS-based spatial and temporal techniques and regression models. This can help 

officials decide how to identify the locations that have high risk in terms of aging-involved 

accidents. Following a review of the spatial and temporal methods, the methodology is applied 

on the roadway network of eleven counties in Florida, namely Alachua, Bay, Broward, Duval, 

Escambia, Hillsborough, Leon, Miami-Dade, Monroe, Pinellas and Walton, based on three 

distinct GIS-based approaches: (a) Spatial analysis in order to reveal the hotspot locations, (b) 

Temporal analysis in order to reveal time-based patterns, and (c) Spatio-temporal analysis in 

order to investigate the relationship between the location and the time of the accidents. This is 

followed by an extensive logistic regression analysis on the major hotspots of the selected 

counties in order to identify the significant factors that affect the aging-involved crashes. Results 

of this research not only highlights the risky accident locations and time periods to the 

transportation officials but can also contribute to the development of more reliable aging-focused 

transportation plans and policies. 

Spatially, identifying high accident risk locations such as critical intersections (hotspots) 

is vital in order to explore ways to reduce and/or prevent the aging-related accidents at those 

locations. With this knowledge, transportation officials can work on the possible reasons behind 

the occurrence of high number of aging-involved accidents. This, in turn, can be used to identify 

the significant factors that contribute to these accidents including driver behaviors and roadway 

characteristics. Leveraging the findings of this study into transportation plans, agencies can use 

this vital information in order to identify the possible deficiencies and therefore improve the 

roadway design at the hotspot regions which can possibly lead to a reduction in the aging-
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involved accidents. This information can also help Departments of Elderly Affairs and Safe 

Mobility for Life Coalition of Florida to develop better mitigation and educations plans for aging 

populations. Among the spatial methods, SANET method, which is based on the roadway 

network-based distance calculations, solves the overestimation and underestimation problems 

associated with the planar (ED)-based kernel density estimation approach, and therefore provides 

more accurate hotspots. 

For the temporal analysis, temporal spider graphs provide a better understanding of the 

time-based accident patterns. For the spatio-temporal approach, Comap method is used in order 

to get a better insight for the critical hotspots in terms of space as well as time. These hotspots 

involving aging populations reveal both locations and time periods where accidents are more 

frequent. Results of this analysis indicate the following: (a) a substantial amount of aging-

involved accidents happen at the intersections, and (b) they happen during the mid-hours of the 

day rather than the peak hours. This temporal result is an unusual pattern for accidents, which 

basically separates aging-involved accidents from other adult age groups. This knowledge can 

allow planners and engineers to focus on those high risk areas and time periods for safety-

focused intervention efforts to assist aging drivers. This can also help increasing the efficiency of 

the traffic operations towards obtaining better policies and plans that focus on aging populations. 

The analysis is extended to identify the significant factors that affect the aging-involved 

accidents via the binary logistic regression models. The regression analysis supports the GIS-

based results in the sense that aging-involved crashes occur more (a) at the intersections, (b) 

during the off-peak hours rather than the rush hours, and (c) on the weekdays rather than the 

weekends. Results also suggest that traffic flow is a more significant factor that affects the aging-

involved crashes than the AADT. This can help transportation officials understand the prominent 
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reasons behind the occurrence of these accidents, focus deeper on the aging driver behavior, and 

pinpoint which road characteristics are unsuitable for aging drivers. 

Many agencies have recognized the need to analyze the aging-involved crashes, and 

several strategic plans have been developed and implemented that can help reduce and avoid 

these crashes. Florida Department of Transportation (FDOT), including several other 

organizations in the State of Florida, have developed the Safe Mobility for Life Coalition 

(SMLC) program to improve safety, access and mobility of Florida’s aging population (SMLC, 

2013). With the help of these agencies, this type of study can be extended by applying the 

spatial, temporal and spatio-temporal methodologies to other counties in Florida and also to other 

states, which are reported to have high aging populations, in order to identify aging-involved 

crash hotspots. In addition to the methods used in this study, other spatial methods such as K-

means and Nearest Neighbor method, and other spatio-temporal methods such as SatScan can be 

implemented, and compared with the results presented in this thesis. Using the network KDE 

approach within the Comap methodology instead of the planar KDE can also help identifying the 

exact hotspot location on the roadway for different time periods. The regression analysis 

presented in this study can be improved with the addition of other factors such as light and 

weather conditions, and other roadway and traffic factors. This study can also be extended in 

order to identify the spatial and temporal patterns of other age group drivers, such as teenagers. 
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Appendix A Yearly Crash Variations 

 

 

Figure A.65 Yearly Crash Variations: Alachua County 
 

 

Figure A.66 Yearly Crash Variations: Bay County 
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Figure A.67 Yearly Crash Variations: Duval County 
 

 

Figure A.68 Yearly Crash Variations: Monroe County 
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Figure A.69 Yearly Crash Variations: Walton County 
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Appendix B Spatial Analysis 

 

        

Figure B.70 Gi* Analysis for the Alachua County 
 

       
Figure B.71 Gi* Analysis for the Bay County 
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Figure B.72 Gi* Analysis for the Duval County 
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Figure B.73 Gi* Analysis for the Monroe County 

 
 

Figure B.74 Gi* Analysis for the Walton County 
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Figure B.75 Planar KDE Application for the Alachua County 
 

 
 

Figure B.76 Planar KDE Applications for the Bay County 
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Figure B.77 Planar KDE Applications for the Duval County 

 

 
 

Figure B.78 Planar KDE Application for the Monroe County 
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Figure B.79 Planar KDE Application for the Walton County 

 
 

Figure B.80 Network KDE (2D) Application for the Alachua County 
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Figure B.81 Network KDE (3D) Application for the Alachua County 

 
Figure B.82 High Crash Roadways Application for the Alachua County 
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Figure B.83 Network KDE (2D) Application for the Bay County 

 
Figure B.84 Network KDE (3D) Application for the Bay County 
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Figure B.85 High Crash Roadways Application for the Bay County 

 
Figure B.86 Network KDE (2D) Application for the Duval County 
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Figure B.87 Network KDE (3D) Application for the Duval County 

 
Figure B.88 High Crash Roadways Application for the Duval County 
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Figure B.89 Network KDE (2D) Application for the Monroe County 

 
Figure B.90 Network KDE (3D) Application for the Monroe County 
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Figure B.91 High Crash Roadways Application for the Monroe County 
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Figure B.92 Network KDE (2D) Application for the Walton County 
 

 
Figure B.93 Network KDE (3D) Application for the Walton County
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Appendix C Hotspots 

Table C.1 Hotspots for the Alachua County 

Alachua County – Hotspot-1 

Age 

Group 

County Crashes Newberry Road Crashes 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced by 

Intersection 3-

Mile 

5-

Mile 

65+ 3,305 1,465 235 7,432 15,265 32 15 
110 

(46.8%) 
145 (61.7%) 

65- 21,219 8,166 1,033 48,655 119,973 21 9 
492 

(47.6%) 
666 (64.4%) 

 Hotspot- Newberry Rd: NW 76th Blvd. to NW 57th St.* 

Alachua County – Hotspot-2 

Age 

Group 

County Crashes SW ARCHER RD 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced by 

Intersection 3-

Mile 

5-

Mile 

65+ 3,305 1,465 163 5,091 13,796 32 12 
66 

(40.5%) 
89 (54.6%) 

65- 
21,21

9 
8,166 1,098 71,237 115,213 15 10 

466 

(42.4%) 
611 (55.6%) 

 Hotspot- SW Archer Rd: From SW 44 ST to SW 34th ST 
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Table C.2 Hotspots for the Bay County 

Bay County – Hotspot-1 

Age 

Group 

County Crashes W 23rd Street Crashes 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

65+ 2,324 1,191 212 8,383 13,882 25 15 
88 

(41.5%) 

126 

(59.4%) 

65- 12,568 5,235 682 34,058 54,679 20 12 
263 

(38.5%) 

392 

(57.4%) 

 Hotspot- W 23rd St.: Stanford Rd. to Hwy. 77 

Bay County – Hotspot-2 

Age 

Group 

County Crashes 15th ST 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

65+ 2,324 1,191 95 6,761 12,154 14 8 
61 

(64.2%) 
76 (80%) 

65- 12,568 5,235 426 25,701 48,441 17 9 
261 

(61.2%) 

322 

(75.5%) 

 Hotspot - 15th St. :From Chandlee Ave to Harrison Ave  
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Table C.3 Hotspots for the Duval County 

Duval County – Hotspot-1 

Age 

Group 

County Crashes 103rd Street Crashes 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

65+ 8,864 3,681 196 9,493 17,951 21 11 102 (52%) 
115 

(58.6%) 

65- 65,862 21,369 1,214 58,853 113,617 21 11 
589 

(48.5%) 
679 (56%) 

 Hotspot- 103rd St. : Hillman Dr./McManus Dr. to Blanding Blvd. 

Duval County – Hotspot-2 

Age 

Group 

County Crashes University Blvd W 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced by 

Intersection 3-

Mile 

5-

Mile 

65+ 8,864 3,681 220 13,797 28,508 16 8 
103 

(46.8%) 
121 (55%) 

65- 65,862 21,369 1,036 66,206 150,506 16 7 
474 

(45.7%) 
554 (53.4%) 

 Hotspot- University Blvd W: From Saint Augustine Rd to Beach Blvd 
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Table C.4 Hotspots for the Monroe County 

Monroe County – Hotspot-1 

Age 

Group 

County Crashes Overseas Hwy/ College Road Crashes 

Total 
Intersection 

Crashes 

Tota

l 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersectio

n Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

65+ 908 407 21 2,882 3,629 7 6 
18 

(85.7%) 
19(90.4%) 

65- 5,039 1,785 59 17,498 21,091 3 3 
31 

(52.5%) 
36 (61%) 

 Hotspot- Overseas Hwy/ College Rd  

Monroe County – Hotspot-2 

Age 

Group 

County Crashes Overseas Hwy/ Tarpon Basin Dr. 

Total 
Intersection 

Crashes 

Tota

l 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersectio

n Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

65+ 908 407 18 998 1,789 18 10 
13 

(72.2%) 
16 (88.8%) 

65- 5,039 1,785 46 4,308 6,352 11 7 
32 

(69.5%) 
35 (76%) 

 Hotspot- Overseas Hwy/ Tarpon Basin Dr.  
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Table C.5 Hotspots for the Walton County 

Walton County – Hotspot-1 

Age 

Group 

County Crashes U.S. Hwy. 98/ U.S. Hwy 331 S Crashes 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

65+ 1,166 442 22 1070 2545 21 9 
14 

(63.6%) 
20 (91%) 

65- 1,801 530 22 1127 3134 20 7 
12 

(54.5%) 
16 (72.7%) 

 Hotspot- U.S. Hwy. 98/ U.S. Hwy 331 S 

Walton County – Hotspot-2 

Age 

Group 

County Crashes Emerald Coast PKWY W 

Total 
Intersection 

Crashes 
Total 

No. of 

Residents 

in 3-Mile 

Radius 

No. of 

Residents 

in 5-Mile 

Radius 

No. of 

Crashes per 

1000 

Residents 

Intersection 

Crashes 

Crashes at 

Intersection/ 

Influenced 

by 

Intersection 3-

Mile 

5-

Mile 

50+ 1,166 442 174 4,036 4,883 43 36 89 (51%) 113 (65%) 

50- 1,801 530 200 3,365 4,157 59 48 
95 

(47.5%) 

127 

(63.5%) 

 Hotspot- Emerald Coast PKWY W: From Professional to Sandestin Blvd N 

126 



 
Appendix D Temporal Analysis 

 

   

                        a. Hourly                                      b. Daily                                      c. Monthly 

Figure D.94 Temporal Analysis of the Alachua County 
 

    

                        a. Hourly                                      b. Daily                                      c. Monthly 

Figure D.95 Temporal Analysis of the Bay County 
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                        a. Hourly                                      b. Daily                                      c. Monthly 

Figure D.96 Temporal Analysis of the Duval County 
 

   

                        a. Hourly                                      b. Daily                                      c. Monthly 

Figure D.97 Temporal Analysis of the Monroe County 
 

   

                        a. Hourly                                      b. Daily                                      c. Monthly 

Figure D.98 Temporal Analysis of the Walton County 
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Appendix E Spatio-Temporal Analysis 

 

 

Figure E.99 Spatio-temporal Analysis for the Alachua County 
 

 

Figure E.100 Spatio-temporal Analysis for the Bay County 
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Figure E.101 Spatio-temporal Analysis for the Duval County 
 

 

Figure E.102 Spatio-temporal Analysis for the Monroe County 
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Figure E.103 Spatio-temporal Analysis for the Walton County 
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